The Goldman-Millson theorem revisited

Vasily Dolgushev

Temple University

Based on joint work arXiv:1407.6735 with Christopher L. Rogers.
An L_∞-algebra is a cochain complex (L, ∂) equipped with **symmetric** multi-brackets of degree 1 ($m \geq 2$)

$$\{ \ldots, \}^m : S^m(L) \to L$$

which satisfy

$$\partial \{ v_1, v_2, \ldots, v_m \}_m + \sum_{i=1}^{m} \pm \{ v_1, \ldots, v_{i-1}, \partial v_i, v_{i+1}, \ldots, v_m \}_m$$

$$+ \sum_{k=2}^{m-1} \sum_{\sigma \in \text{Sh}_{k,m-k}} \pm \{ \{ v_{\sigma(1)} , \ldots , v_{\sigma(k)} \}_{k} v_{\sigma(k+1)}, \ldots , v_{\sigma(m)} \}_{m-k+1} = 0.$$
An L_∞-algebra is a cochain complex (L, ∂) equipped with symmetric multi-brackets of degree 1 ($m \geq 2$)

$$\{ , , \ldots, \} : S^m(L) \to L$$

which satisfy

$$\partial\{v_1, v_2, \ldots, v_m\}_m + \sum_{i=1}^m \pm\{v_1, \ldots, v_{i-1}, \partial v_i, v_{i+1}, \ldots, v_m\}_m$$

$$+ \sum_{k=2}^{m-1} \sum_{\sigma \in Sh_{k,m-k}} \pm\{v_{\sigma(1)}, \ldots, v_{\sigma(k)}\}_k, v_{\sigma(k+1)}, \ldots, v_{\sigma(m)}\}_{m-k+1} = 0.$$

The base field k has characteristic zero.
Let (L, ∂) be a cochain complex and $S(L) = L \oplus \bigoplus_{m \geq 2} S^m(L)$ be the space of the truncated symmetric algebra. We view $S(L)$ as the **cocommutative coalgebra** with the standard comultiplication.
The dg cocommutative coalgebra corresponding to L

Let (L, ∂) be a cochain complex and $S(L) = L \oplus \bigoplus_{m \geq 2} S^m(L)$ be the space of the truncated symmetric algebra. We view $S(L)$ as the **cocommutative coalgebra** with the standard comultiplication.

An L_∞-structure on L is a degree 1 coderivation Q on the coalgebra $S(L)$ which satisfies the Maurer-Cartan (MC) equation

$$Q \circ Q = 0$$

and the condition $Q(\nu) = \partial(\nu) \quad \forall \ \nu \in L.$
Let \((L, \partial)\) be a cochain complex and \(S(L) = L \oplus \bigoplus_{m \geq 2} S^m(L)\) be the space of the truncated symmetric algebra. We view \(S(L)\) as the cocommutative coalgebra with the standard comultiplication.

An \(L_\infty\)-structure on \(L\) is a degree 1 coderivation \(Q\) on the coalgebra \(S(L)\) which satisfies the Maurer-Cartan (MC) equation

\[Q \circ Q = 0 \]

and the condition \(Q(v) = \partial(v)\ \forall \ v \in L.\)

The multi-brackets \(\{, , \ldots , \}_m\) are related to \(Q\) by the formula

\[\{v_1, v_2, \ldots , v_m\}_m = p_L \circ Q(v_1 v_2 \ldots v_m), \]

where \(p_L\) is the projection \(S(L) \to L.\)
The dg cocommutative coalgebra corresponding to L

Let (L, ∂) be a cochain complex and $S(L) = L \oplus \bigoplus_{m \geq 2} S^m(L)$ be the space of the truncated symmetric algebra. We view $S(L)$ as the cocommutative coalgebra with the standard comultiplication.

An L_∞-structure on L is a degree 1 coderivation Q on the coalgebra $S(L)$ which satisfies the Maurer-Cartan (MC) equation

$$Q \circ Q = 0$$

and the condition $Q(v) = \partial(v) \ \forall \ v \in L$.

The multi-brackets $\{ \ldots \}$ m are related to Q by the formula

$$\{v_1, v_2, \ldots, v_m\}_m = p_L \circ Q(v_1 v_2 \ldots v_m),$$

where p_L is the projection $S(L) \to L$.

To every L_∞-algebra L, we assign the dg cocomm. coalgebra $(S(L), Q)$.
An L_∞-morphism from L to \tilde{L} is ...

Definition

An L_∞-morphism from an L_∞-algebra L to an L_∞-algebra \tilde{L} is a homomorphism U of dg cocommutative coalgebras $(S(L), Q) \rightarrow (S(\tilde{L}), \tilde{Q})$.

Recall that every homomorphism $U: S(L) \rightarrow S(\tilde{L})$ is uniquely determined by its composition $U': p_{\tilde{L}} \circ U: S(L) \rightarrow \tilde{L}$ with the projection $p_{\tilde{L}}: S(\tilde{L}) \rightarrow \tilde{L}$ and the linear term $U(1): L \rightarrow \tilde{L}$ is always a chain map from $(L, \partial) \rightarrow (\tilde{L}, \tilde{\partial})$.

An L_∞-morphism U is called a quasi-isomorphism if its linear term $U(1)$ induces an isomorphism $H^\bullet(L, \partial) \rightarrow H^\bullet(\tilde{L}, \tilde{\partial})$.

Vasily Dolgushev (Temple University)
An L_∞-morphism from L to \tilde{L} is ...

Definition

An L_∞-morphism from an L_∞-algebra L to an L_∞-algebra \tilde{L} is a homomorphism U of dg cocommutative coalgebras $(S(L), Q) \to (S(\tilde{L}), \tilde{Q})$.

Recall that every homomorphism $U : S(L) \to S(\tilde{L})$ is uniquely determined by its composition $U' := p_{\tilde{L}} \circ U : S(L) \to \tilde{L}$ with the projection $p_{\tilde{L}} : S(\tilde{L}) \to \tilde{L}$ and the linear term

$$U_{(1)} := U'|_L : L \to \tilde{L}$$

is always a chain map from (L, ∂) to $(\tilde{L}, \tilde{\partial})$.

Vasily Dolgushev (Temple University)
An L_{∞}-morphism from L to \tilde{L} is ...

\begin{definition}
An L_{∞}-morphism from an L_{∞}-algebra L to an L_{∞}-algebra \tilde{L} is a homomorphism U of dg cocommutative coalgebras $(S(L), Q) \to (S(\tilde{L}), \tilde{Q})$.

Recall that every homomorphism $U : S(L) \to S(\tilde{L})$ is uniquely determined by its composition $U' := p_{\tilde{L}} \circ U : S(L) \to \tilde{L}$ with the projection $p_{\tilde{L}} : S(\tilde{L}) \to \tilde{L}$ and the linear term

$$U_{(1)} := (U')_{|L} : L \to \tilde{L}$$

is always a chain map from (L, ∂) to $(\tilde{L}, \tilde{\partial})$.

An L_{∞}-morphism U is called a quasi-isomorphism if its linear term $U_{(1)}$ induces an isomorphism $H^\bullet(L, \partial) \to H^\bullet(\tilde{L}, \tilde{\partial})$.
\end{definition}

Vasily Dolgushev (Temple University)
An L_∞-algebra L is **filtered** if it is equipped with a descending filtration

$$L = \mathcal{F}_1L \supset \mathcal{F}_2L \supset \mathcal{F}_3L \supset \cdots,$$

such that

$$L = \varprojlim_{k} L/\mathcal{F}_kL,$$

$$\partial(\mathcal{F}_iL) \subset \mathcal{F}_iL,$$

$$\{\mathcal{F}_{i_1}L, \mathcal{F}_{i_2}L, \ldots, \mathcal{F}_{i_m}L\}_m \subset \mathcal{F}_{i_1+i_2+\ldots+i_m}L \quad \forall \ m \geq 2.$$
Filtered L_∞-algebras

Definition

An L_∞-algebra L is **filtered** if it is equipped with a descending filtration

$$L = \mathcal{F}_1 L \supset \mathcal{F}_2 L \supset \mathcal{F}_3 L \supset \cdots,$$

such that

$$L = \lim_\leftarrow \frac{L}{\mathcal{F}_k L},$$

$$\partial(\mathcal{F}_i L) \subset \mathcal{F}_i L,$$

$$\{\mathcal{F}_{i_1} L, \mathcal{F}_{i_2} L, \ldots, \mathcal{F}_{i_m} L\} \subset \mathcal{F}_{i_1 + i_2 + \cdots + i_m} L \quad \forall \ m \geq 2.$$

Assumption: all ∞-morphisms U in question are compatible with the filtrations in the sense that

$$U'(\mathcal{F}_{i_1} L \otimes \mathcal{F}_{i_2} L \otimes \cdots \otimes \mathcal{F}_{i_m} L) \subset \mathcal{F}_{i_1 + i_2 + \cdots + i_m} \tilde{L} \quad \forall \ m \geq 1.$$
Examples:

Let A be an associative algebra over \mathbb{k} and ε be a formal deformation parameter. Then $L_A := \varepsilon C^\bullet(A, A)[[\varepsilon]]$ (with the Hochschild differential and the Gerstenhaber bracket) is a filtered dg Lie algebra with $F_k L_A := \varepsilon^k C^\bullet(A, A)[[\varepsilon]]$.

If O is a dg operad and P is a pseudo-cooperad with $P(0) = P(1) = 0$ then $\text{Conv}(P, O) := \prod_{n \geq 2} \text{Hom}_{S^n}(P(n), O(n))$ is a filtered dg Lie algebra with $F_k \text{Conv}(P, O) := \prod_{n \geq k+1} \text{Hom}_{S^n}(P(n), O(n))$.

Let X be a simply-connected space and $L_X := \bigoplus_{i \leq -2} \pi_{-i}(X) \otimes \mathbb{Q}$ be the minimal L_∞-algebra representing the rational homotopy type of X.

Vasily Dolgushev (Temple University)
Examples:

Let A be an associative algebra over k and ε be a formal deformation parameter. Then $L_A := \varepsilon C^\bullet(A, A)[[\varepsilon]]$ (with the Hochschild differential and the Gerstenhaber bracket) is a filtered dg Lie algebra with $\mathcal{F}_k L_A := \varepsilon^k C^\bullet(A, A)[[\varepsilon]]$.

If \mathcal{O} is a dg operad and P is a pseudo-cooperad with $P(0) = P(1) = 0$ then

$$\text{Conv}(P, \mathcal{O}) := \prod_{n \geq 2} \text{Hom}_{S_n}(P(n), \mathcal{O}(n))$$

is a filtered dg Lie algebra with

$$\mathcal{F}_k \text{Conv}(P, \mathcal{O}) := \prod_{n \geq k+1} \text{Hom}_{S_n}(P(n), \mathcal{O}(n))$$
Examples:

- Let A be an associative algebra over k and ε be a formal deformation parameter. Then $L_A := \varepsilon C^\bullet (A, A)[[\varepsilon]]$ (with the Hochschild differential and the Gerstenhaber bracket) is a filtered dg Lie algebra with $F_k L_A := \varepsilon^k C^\bullet (A, A)[[\varepsilon]]$.

- If \mathcal{O} is a dg operad and P is a pseudo-cooperad with $P(0) = P(1) = 0$ then

 $$\text{Conv}(P, \mathcal{O}) := \prod_{n \geq 2} \text{Hom}_{S_n}(P(n), \mathcal{O}(n))$$

 is a filtered dg Lie algebra with

 $$F_k \text{Conv}(P, \mathcal{O}) := \prod_{n \geq k+1} \text{Hom}_{S_n}(P(n), \mathcal{O}(n))$$

- Let X be a simply-connected space and

 $$L_X := \bigoplus_{i \leq -2} \pi_i(X) \otimes_{\mathbb{Z}} \mathbb{Q}$$

 be the minimal L_∞-algebra representing the rational homotopy type of X.

Vasily Dolgushev (Temple University)

The Goldman-Millson theorem
Recall that a MC element of a (filtered) L_∞-algebra L is a degree 0 element $\alpha \in L$ which satisfies
\[
\partial \alpha + \sum_{m=2}^{\infty} \frac{1}{m!} \{\alpha, \alpha, \ldots, \alpha\}_m = 0.
\]
Denote by $MC(L)$ the set of MC elements of an L_∞-algebra L.

\[
\text{MC elements and the de Rham-Sullivan algebra } \Omega_n
\]
Recall that a MC element of a (filtered) L_∞-algebra L is a degree 0 element $\alpha \in L$ which satisfies

$$\partial \alpha + \sum_{m=2}^{\infty} \frac{1}{m!} \{\alpha, \alpha, \ldots, \alpha\}_m = 0.$$

Denote by $MC(L)$ the set of MC elements of an L_∞-algebra L.

Let Ω_n be the de Rham-Sullivan algebra of polynomial differential forms on the geometric simplex Δ^n:

$$\Omega_n := \mathbb{k}[t_0, t_1, \ldots, t_n, dt_0, dt_1, \ldots, dt_n] / (t_0 + \cdots + t_n - 1, dt_0 + \cdots + dt_n)$$

Each t_i has degree 0, each dt_i has degree 1, $d(t_i) := dt_i$.

MC elements and the de Rham-Sullivan algebra Ω_n

Recall that a MC element of a (filtered) L_∞-algebra L is a degree 0 element $\alpha \in L$ which satisfies

$$\partial \alpha + \sum_{m=2}^{\infty} \frac{1}{m!} \{\alpha, \alpha, \ldots, \alpha\}_m = 0.$$

Denote by $\mathcal{MC}(L)$ the set of MC elements of an L_∞-algebra L.

Let Ω_n be the de Rham-Sullivan algebra of polynomial differential forms on the geometric simplex Δ^n:

$$\Omega_n := \mathbb{k}[t_0, t_1, \ldots, t_n, dt_0, dt_1, \ldots, dt_n] / (t_0 + \cdots + t_n - 1, dt_0 + \cdots + dt_n)$$

Each t_i has degree 0, each dt_i has degree 1, $d(t_i) := dt_i$.

To a filtered L_∞-algebra L, we assign the simplicial set $\text{MC}_{\bullet}(L)$ with

$$\text{MC}_n(L) := \mathcal{MC}(L \hat{\otimes} \Omega_n).$$
A straightforward generalization of Prop 4.7 from E. Getzler, 2009 implies that

Proposition

For every filtered $L\infty$-algebra L, the simplicial set $MC\bullet(L)$ is a Kan complex.

We call $MC\bullet(L)$ the DGH ∞-groupoid corresponding to L.
A straightforward generalization of Prop 4.7 from E. Getzler, 2009 implies that

Proposition

For every filtered L_∞-algebra L, the simplicial set $MC_\bullet(L)$ is a Kan complex.

We call $MC_\bullet(L)$ the DGH ∞-groupoid corresponding to L.

For example, if A is an associative algebra and $L_A := \varepsilon C^\bullet(A, A)[[\varepsilon]]$ then

$$\pi_0(MC_\bullet(L_A))$$

is the set of equivalence classes of 1-parameter formal deformations of A.
More examples:

If \mathcal{O} is a dg operad, P is a pseudo-cooperad, and $L = \text{Conv}(P, \mathcal{O})$ then

$$
\pi_0\left(\text{MC}_\bullet \left(\text{Conv}(P, \mathcal{O}) \right) \right)
$$

is the set of homotopy classes of operad maps $\text{Cobar}(\mathcal{C}) \to \mathcal{O}$, where \mathcal{C} is obtained from P via adjoining the counit.
More examples:

If \mathcal{O} is a dg operad, P is a pseudo-cooperad, and $L = \text{Conv}(P, \mathcal{O})$ then

$$\pi_0\left(\text{MC}_\bullet(\text{Conv}(P, \mathcal{O}))\right)$$

is the set of homotopy classes of operad maps $\text{Cobar}(C) \to \mathcal{O}$, where C is obtained from P via adjoining the counit.

Theorem (A. Berglund, 2011)

For every nilpotent L_∞-algebra L and $\alpha \in MC(L)$, we have the isomorphism of groups

$$H^{-i}(L^\alpha) \cong \pi_i(\text{MC}_\bullet(L), \alpha), \quad \forall i \geq 1,$$

where L^α is obtained from L via twisting the L_∞-structure by α and the group structure on $H^{-1}(L^\alpha)$ is given the Campbell-Hausdorff formula.
More examples:

If O is a dg operad, P is a pseudo-cooperad, and $L = \text{Conv}(P, O)$ then

$$\pi_0\left(\text{MC}_\bullet\left(\text{Conv}(P, O) \right) \right)$$

is the set of homotopy classes of operad maps $\text{Cobar}(C) \to O$, where C is obtained from P via adjoining the counit.

Theorem (A. Berglund, 2011)

For every nilpotent L_∞-algebra L and $\alpha \in \mathcal{MC}(L)$, we have the isomorphism of groups

$$H^{-i}(L^\alpha) \cong \pi_i(\text{MC}_\bullet(L), \alpha), \quad \forall i \geq 1,$$

where L^α is obtained from L via twisting the L_∞-structure by α and the group structure on $H^{-1}(L^\alpha)$ is given the Campbell-Hausdorff formula.

In particular, if $\text{MC}_\bullet(L)$ is simply-connected then $|\text{MC}_\bullet(L)|$ is a rational space.
The main result is ...

Observation: Every L_∞-morphism $U : L \to \tilde{L}$ compatible with filtrations induces the map of simplicial sets

$$MC_\bullet(U) : MC_\bullet(L) \to MC_\bullet(\tilde{L}).$$

This way, the construction MC_\bullet upgrades to a functor from the category of (filtered) L_∞-algebras with L_∞-morphisms to the category of simplicial sets.
The main result is ...

Observation: Every L_{∞}-morphism $U : L \to \tilde{L}$ compatible with filtrations induces the map of simplicial sets

$$\text{MC}_\bullet(U) : \text{MC}_\bullet(L) \to \text{MC}_\bullet(\tilde{L}).$$

This way, the construction MC_\bullet upgrades to a functor from the category of (filtered) L_{∞}-algebras with L_{∞}-morphisms to the category of simplicial sets.

Theorem (Christopher L. Rogers and V.D.)

Let L and \tilde{L} be filtered L_{∞}-algebras and U be an ∞-morphism from L to \tilde{L} compatible with the filtrations. If the linear term $U_{(1)} : L \to \tilde{L}$ gives us a quasi-isomorphism

$$U_{(1)} \mid_{\mathcal{F}_mL} : \mathcal{F}_mL \to \mathcal{F}_m\tilde{L}$$

for every $m \geq 1$ then

$$\text{MC}_\bullet(U) : \text{MC}_\bullet(L) \to \text{MC}_\bullet(\tilde{L})$$

is a weak equivalence of simplicial sets.
Let \(\varphi : \mathcal{O} \to \tilde{\mathcal{O}} \) be a quasi-isomorphisms of dg operads and \(\mathcal{C} \) be a dg operad satisfying \(\mathcal{C}(0) = 0 \) and \(\mathcal{C}(1) = \mathbb{k} \). Then for every operad map \(\tilde{f} : \text{Cobar}(\mathcal{C}) \to \tilde{\mathcal{O}} \) there exists an operad map \(f : \text{Cobar}(\mathcal{C}) \to \mathcal{O} \) such that the diagram

\[
\begin{array}{ccc}
\text{Cobar}(\mathcal{C}) & \xrightarrow{\tilde{f}} & \tilde{\mathcal{O}} \\
\downarrow{f} & & \downarrow{\varphi} \\
\mathcal{O} & \xrightarrow{\varphi} & \tilde{\mathcal{O}}
\end{array}
\]

commutes up to homotopy. The homotopy class of \(f : \text{Cobar}(\mathcal{C}) \to \mathcal{O} \) is uniquely determined by the homotopy class of \(\tilde{f} \).
Let $\varphi : \mathcal{O} \to \tilde{\mathcal{O}}$ be a quasi-isomorphism of dg operads and \mathcal{C} be a dg operad satisfying $\mathcal{C}(0) = 0$ and $\mathcal{C}(1) = \mathbb{k}$. Then for every operad map $\tilde{f} : \text{Cobar}(\mathcal{C}) \to \tilde{\mathcal{O}}$ there exists an operad map $f : \text{Cobar}(\mathcal{C}) \to \mathcal{O}$ such that the diagram

$$
\begin{array}{ccc}
\text{Cobar}(\mathcal{C}) & \xrightarrow{\tilde{f}} & \tilde{\mathcal{O}} \\
\downarrow{f} & & \downarrow{\varphi} \\
\mathcal{O} & \xrightarrow{\varphi} & \tilde{\mathcal{O}}
\end{array}
$$

commutes up to homotopy. The homotopy class of $f : \text{Cobar}(\mathcal{C}) \to \mathcal{O}$ is uniquely determined by the homotopy class of \tilde{f}.

Please, come to the next talk!
Does the homotopy type of MC\(_{\bullet}(L)\) depend on the choice of filtration?

Let \(G_{\bullet}L\) be another descending filtration on \(L\) such that \(L = G_1L\), \(L\) is complete with respect to this filtration, the multi-brackets are compatible with \(G_{\bullet}L\). Let \(J_{\bullet}L\) be the filtration on \(L\) obtained by intersecting

\[J_mL := F_mL \cap G_mL.\]

Then we have the DGH \(\infty\)-groupoids \(MC_{\bullet}^F(L)\), \(MC_{\bullet}^G(L)\), and \(MC_{\bullet}^J(L)\) of \(L\) constructed with the help of the filtrations \(F\), \(G\) and \(J\), respectively.
Does the homotopy type of $\text{MC}_\bullet(L)$ depend on the choice of filtration?

Let $G\cdot L$ be another descending filtration on L such that $L = G_1 L$, L is complete with respect to this filtration, the multi-brackets are compatible with $G\cdot L$. Let $J\cdot L$ be the filtration on L obtained by intersecting

$$J_m L := F_m L \cap G_m L.$$

Then we have the DGH ∞-groupoids $\text{MC}_{\bullet}^{F}(L)$, $\text{MC}_{\bullet}^{G}(L)$, and $\text{MC}_{\bullet}^{J}(L)$ of L constructed with the help of the filtrations F, G and J, respectively.

Claim (based on a discussion with T. Willwacher)

The canonical maps of simplicial sets

$$\text{MC}_{\bullet}^{F}(L) \leftarrow \text{MC}_{\bullet}^{J}(L) \rightarrow \text{MC}_{\bullet}^{G}(L)$$

are weak homotopy equivalences.
References

THANK YOU!