Assignment 8

Exercise 1. (4 pts.) Let B be a (coassociative) coalgebra and Q_1, Q_2 be coderivations of B with degrees q_1 and q_2, respectively. Prove that the commutator

$$[Q_1, Q_2] = Q_1 \circ Q_2 - (-1)^{q_1 q_2} Q_2 \circ Q_1$$

is a coderivation of B.

Exercise 2. (3 pts.) Let Vect be the category of K-vector spaces. Consider the monad (T, μ, ε) corresponding to the functor T which sends a vector space V to its tensor algebra

$$T(V) = K \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \ldots.$$

Prove that algebras over the monad (T, μ, ε) are unital associative algebras.

Exercise 3. (3 pts.) Let Vect be the category of K-vector spaces. Consider the comonad (C, Δ, p) corresponding to the functor C which sends a vector space V to the truncated symmetric algebra

$$C(V) = V \oplus S^2(V) \oplus S^3(V) \oplus \ldots.$$

Here Δ is the “comultiplication”:

$$\Delta_V : C(V) \to CC(V)$$

and the “counit” p is the projection

$$p_V : C(V) \to V.$$

Prove that coalgebras over the comonad (C, Δ, p) are cocommutative (coassociative) algebras (without counit).