Assignment 13

Exercise 1. (5 pts.) Let M be a smooth real manifold and v, w be polyvector fields on M. For a coordinate neighborhood $U \subset M$ we set
\[
[v, w]_S |_U := [v|_U, w|_U]_S
\]
where the bracket $[\cdot, \cdot]_S$ in the right hand side is the Schouten bracket we used for \mathbb{R}^d. Prove that the right hand side of (1) transforms correctly under a change of local coordinates. Thus, equation (1) defines a Lie bracket on $V^*_{M^{\bullet+1}}$.

Hint: You may start with the case when v and w are vector fields. In this case the Schouten bracket coincides with the usual Lie bracket of vector fields.

Exercise 2. (5 pts.) Let ω be a non-degenerate 2-form on M and π be a bivector field defined by the formula
\[
\sum_j \pi^{ij}(x)\omega_{jk}(x) = \delta^i_k.
\]
Prove that π is a Poisson bivector field $\Leftrightarrow \omega$ is closed.

Hint: A 2-form ω is closed \Leftrightarrow
\[
\partial_x^i \omega_{jk}(x) + \partial_{x^j} \omega_{ki}(x) + \partial_{x^k} \omega_{ij}(x) = 0
\]
for all triples of indices i, j, k.