Introduction and Heuristic

Let $G_\mathbb{Q}$ be the absolute Galois group of the rational numbers. A Galois representation is a continuous homomorphism

$$\rho : G_\mathbb{Q} \to G\ell_2(A),$$

for a topological ring A. In practice, Galois representations arise from the action of $G_\mathbb{Q}$ on the cohomology of varieties defined over \mathbb{Q}.

Heuristic. The image of a Galois representation should be as large as possible subject to the symmetries (cf. Definition 1) of the geometric object from which it arose.

Definitions

Fix a prime $p > 2$ and embeddings $\overline{Q} \hookrightarrow \mathbb{C}$ and $\overline{Q} \hookrightarrow \mathbb{Q}_p$.

Definition 1. [6] Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a cuspidal Hecke eigenform, and let K be the number field generated by $(a_n : n \in \mathbb{Z}^+)$. An automorphism σ of K is a conjugate self-twist of f if there is a nontrivial Dirichlet character η_{σ} such that

$$a_{\sigma n} = \eta_{\sigma}(n) a_n$$

for almost all primes ℓ. If the identity automorphism is a conjugate self-twist of f, then we say f has complex multiplication (CM).

Let $K = \mathbb{Q}[[T]]$. For an integer $k \geq 2$ and a p-power root of unity ζ, let $P_{k, \zeta} = (1 + T - \zeta(1 + p)T^p)\Lambda$. Such primes (and primes lying over them) are called arithmetic.

Definition 2. [2] Let \mathbb{I} be an integral domain that is finite flat over Λ. A formal power series $F = \sum_{n=1}^{\infty} A_n q^n \in \mathbb{I}[[q]]$ is a Hida family if $A_p \in \mathbb{I}^+$ and, for every prime ideal \mathfrak{p} of \mathbb{I} lying over some $P_{k, \zeta}$, we have

- $A_p \mod \mathfrak{p} \in \mathbb{I}^+$ (rather than just $\overline{\mathbb{Q}}_p$)
- $f_{\mathfrak{p}} : = \sum_{n=1}^{\infty} (A_n \mod \mathfrak{p}) q^n$ is the q-expansion of a classical modular form of weight k and the appropriate level and nebentypus.

Main Theorem

Let $F = \sum_{n=1}^{\infty} A_n q^n \in \mathbb{I}[[q]]$ be a Hida family. Hida showed [1] that there is a Galois representation $\rho_F : G_\mathbb{Q} \to G\ell_2(\mathbb{Q})$ that is unramified outside a finite set of primes and such that

$$\text{tr} \rho_F(\text{Frob}_\ell) = A_\ell$$

for all primes ℓ at which ρ_F is unramified.

We can define conjugate self-twists of F and the notion of CM following Definition 1 but replacing K with the field of fractions of \mathbb{I}. For simplicity assume that I is normal, and let I_0 be the subring of I fixed by all conjugate self-twists of F.

Theorem 1. (L., [4]) Let F be a non-CM Hida family. Assume that the residual representation $\bar{\rho}_F$ is absolutely irreducible and satisfies a minor \mathbb{Z}_p-regularity condition. Then there is a non-zero \mathbb{I}_0-ideal a_0 such that, in an appropriate basis, the image of $\bar{\rho}_F$ contains $\ker(\text{SL}_2(I_0) \to \text{SL}_2(I_0/a_0))$.

Proof: Liftings Twists

We keep the notation from Theorem 1 above. The following is a key input to the proof of Theorem 1.

Theorem 2. (L., [4]) Let F be an arithmetic prime of \mathbb{I} and $\bar{\sigma}$ a conjugate self-twist of $f_{\mathfrak{p}}$. If σ preserves the local field generated by the Fourier coefficients of $f_{\mathfrak{p}}$, then σ can be lifted to a conjugate self-twist $\bar{\sigma}$ of F.

Proof: Reduction Steps

Theorem 3. [7, 5] Let F be a classical non-CM cuspidal eigenform. Let O_0 be the ring fixed by all conjugate self-twists of f. Then for any prime \mathfrak{p}, the image of $\rho_{f, \mathfrak{p}}$ contains an open subgroup of $O_{0, \mathfrak{p}}$. Let $G = \mathbb{I} / \mathfrak{p}P$ and P be an arithmetic prime of Λ.

Future Work

- What is the largest \mathbb{I}_0-ideal a_0 that satisfies Theorem 1? We expect the answer is related to the congruence ideal of F, which in some cases can be related to p-adic L-functions.
- To what extent can we completely determine the image of $\bar{\rho}_F$?
- Is there an analogue of the Mumford-Tate Conjecture for p-adic families of Galois representations?

References

Acknowledgements

This research was supported by an NSF GRF under Grant No. DGE-1144087. Travel to BU-Keio U. Workshop was funded by UCLA Graduate Division Conference Travel Funds. Thanks to Haruzo Hida for his guidance and for suggesting this problem.

Contact Information

Web: www.math.ucla.edu/~jaclynlang
Email: jaclynlang@math.ucla.edu