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ABSTRACT

A scheme is presented for mapping the connectivity of a potential magnetic field arising from an arbitrary
distribution of discrete sources. The field lines interconnecting the sources are classified into Nd domains,
defining the field’s connectivity. The number of domains is shown to depend on the number of sources and on
the numbers of nulls and separators according to a simple relation. A class of nonpotential equilibria are then
generated by minimizing magnetic energy subject to constraints on the flux of each domain. The resulting
equilibria are current-free within each domain and contain singular currents along each of the field’s
separators.

Subject headings:MHD — Sun: corona — Sun: magnetic fields

1. INTRODUCTION

Solar observations have led to a basic picture of coronal
activity as arising from the interaction between ‘‘ systems ’’
of magnetic flux. To illustrate this point, Sweet (1958)
sketched an example of a coronal field rooted in four sun-
spots (two positive and two negative). Magnetic activity
arises, he suggested, from reconnection along the single field
line lying at the interface of the four resulting flux systems.
Models studied since then have confirmed that such field
lines, called separators, are the sites of kinematic magnetic
reconnection in three dimensions (Greene 1988; Lau & Finn
1990). A separator is the generalization to three dimensions
of a two-dimensional X-point. Since most two-dimensional
theories show reconnection occurring at X-points, it is not
surprising that generalizations of these theories predict
reconnection at separators. It has been shown both analyti-
cally and through simulations that current sheets develop
dynamically at separators (Longcope & Cowley 1996;
Galsgaard, Priest, & Nordlund 2000), much as current
sheets develop at two-dimensional X-points (Syrovatskii
1971; Biskamp 1986).

Recently, Longcope (2001) proposed a variational model
for flux-constrained magnetic equilibria. This model enum-
erated topologically distinct systems of flux called domains,
defined by the sources their field lines connect. Minimizing
magnetic energy subject only to constraints on the flux
within each domain leads to a class of equilibria. Flux con-
straints are inherently less restrictive than the more common
constraints, known as line-tying, so flux-constrained equili-
bria have lower energy than a general force-free field. This
property makes flux-constrained equilibria a useful tool for
quantifying energies available in solar flares (Longcope &
Silva 1998), X-ray bright points (Longcope & Kankelborg
2001), and quiet-Sun heating (Longcope & Kankelborg
1999).

Flux-constrained equilibria were shown by Longcope to
be current-free in every domain and to contain current
sheets localized to features known as isolating loops. Isolat-
ing loops were defined from a schematic of the domain con-

nections (the domain graph); however, their definition is not
unique. It was shown that for general two-dimensional
potential fields every X-point is an isolating loop and that
the nonuniqueness in their definition is irrelevant to the
resulting equilibrium. For general three-dimensional fields
it could be shown that separators form at least parts of iso-
lating loops, but a similarly powerful statement could not be
made. This left open two questions concerning the proper-
ties of flux-constrained equilibria as they might apply to a
coronal field: (1)Will every separator in a given field contain
a current sheet? (2) Will current sheets be found only at sep-
arators, or might there be other pieces in an isolating loop?

The difficulty in a general application stems from a poor
understanding of the topologies possible in three-dimen-
sional fields. Apart from the four-pole system introduced by
Sweet and models of the Earth’s magnetosphere, very few
examples have been studied. Only in the past several years
has an effort been made to catalog the possible connectiv-
ities between a handful of magnetic poles through a poten-
tial magnetic field (Bungey, Titov, & Priest 1996; Brown &
Priest 2001).

There is a need for a general scheme for analyzing field
topologies apart from the theory of flux-constrained equili-
bria. Over the past decade observations of solar flares have
begun to be interpreted in terms of the magnetic field’s
three-dimensional topology (Démoulin et al. 1994; Bagalá
et al. 1995; Aulanier et al. 2000; Fletcher et al. 2001). These
analyses identify topologically significant features such as
separatrices and separators, in a model magnetic field. At
present there is no systematic procedure for identifying all
of the separators and separatrices present in even a potential
extrapolation. This deficiency can affect their use in any
careful analysis.

This work presents a systematic scheme for characterizing
the connectivity of the potential magnetic field generated by
a set of sources. This requires the introduction of numerous
new terms, whose definitions are repeated in an Appendix
for the reader’s convenience. General formulae are derived
for the number of magnetic domains, Nd , and the structure
of their domain graph. This general construction is used to
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show that every isolating loop is composed only of separa-
tors and that every separator is part of at least one isolating
loop. This provides a practical technique for calculating all
domain fluxes in the potential field from a path integral
along each separator. A class of flux-constrained fields fol-
lows from energy minimization while the domain fluxes are
constrained to values different from the potential field. We
further show that while the isolating loops can be chosen in
several different ways, every choice leads to exactly the same
flux-constrained equilibrium. This provides a definitive
answer to the questions concerning flux-constrained fields:
current sheets will occur only at separators, and every sepa-
rator will have a current sheet. We conclude by applying the
technique to an observed active region modeled using
Ns ¼ 20 magnetic sources.

2. THE POTENTIAL MAGNETIC FIELD

We first propose a scheme to completely characterize the
connectivity of a potential magnetic field. To be as general
as possible, we consider an unbounded three-dimensional
volume excluding a countable set of isolated star-shaped
regions, called source regions. Each source region is enclosed
by a topologically spherical (i.e., genus-zero) surface, called
the source skin @R. In the case that point sources are used,
the source skins will be infinitesimal spherical shells. To
apply this general formulation to the solar corona, we will
later assume that the source regions are flat and restricted to
a plane (the photosphere) and we will consider only the
magnetic field above this plane. Before returning to this
special case, however, we will make no assumptions about
the shape or distribution of source surfaces and will con-
sider the field in the entire unbounded volume.

Within our volume we consider a magnetic field
(

D

xB ¼ 0) that is current-free (

D

� B ¼ 0) and matches
specified normal components Bn on each source skin. The
surface field Bn will be finite and either positive or negative
over an entire source. The field is the gradient of a harmonic
potential, B ¼ �

D

�, r2� ¼ 0, which satisfies Neumann
conditions on the source skins: @�=@n ¼ �Bn.

The sources will be assigned unique indices denoted by
variables a, b, or c. The total flux leaving source a will be
denoted

�a �
I
@Ra

Bn da : ð1Þ

If the complete set of sources has net flux
P

a �a 6¼ 0, then
we will include infinity as an additional source containing
the balance of flux. In this way the net flux of all sources will
always vanish. Hereafter, we will not distinguish between
finite sources and the possible source at infinity.

With notable exceptions contained within a region of zero
measure, elaborated below, every field line originates in a
positive source and terminates in a negative source. Includ-
ing infinity as a source makes this statement apply equally
to ‘‘ open ’’ field lines. The volume is thus partitioned into
Nd domains defined by the pair of sources at the end of each
field line such that all field lines within a given domain are
homotopic, meaning that they may be continuously
deformed into one another without leaving the domain.
(Note that there may be multiple domains connecting the
same two sources.) Between domains there must be boun-
dary surfaces, called separatrices, which we will assume to

be as smooth as needed. Since the normal flux Bn never van-
ishes, there will be no ‘‘ bald patches,’’ and each separatrix
in a generic potential magnetic field is the fan surface of a
magnetic null point (Bungey et al. 1996).

A null point x� is a location where the magnetic field vec-
tor vanishes [Bðx�Þ ¼ 0]. In the neighborhood of this point
the magnetic field can be approximated by its first non-
vanishing term

Bðx� þ �xÞ ’ J� x �x ; ð2Þ

where J�ij ¼ @Bi=@xj is the Jacobian matrix evaluated at x�.
This matrix is symmetric and traceless owing to the condi-
tions

D

� B ¼ 0 and

D

xB ¼ 0, respectively. The matrix
therefore has three orthogonal eigenvectors and three real
eigenvalues that sum to zero.

In general the null can be classified as either positive or
negative depending on the sign of � det J� (Yeh 1976;
Parnell et al. 1996). The case det J� ¼ 0 is not structurally
stable; i.e., slight changes to the magnetic field would make
det J 6¼ 0. We henceforth discount the possibility of such
accidents.

A positive null (also called a B-type null in the literature)
has two positive eigenvalues, whose eigenvectors define a
surface called the local fan plane. Field lines within this
plane originate at the null point, and their extension beyond
the null’s local neighborhood forms the full fan surface.
Two spine field lines terminate in the null point, entering
along the directions parallel and antiparallel to the third
eigenvector, normal to the fan plane. The fan and spine field
lines of a negative null point (or A-type null point) run in
the opposite direction: they terminate and originate in the
null point, respectively.

Fan and spine field lines are the only exceptions to our
general contention that every field line belongs to one and
only one domain. Closed or ergodic field lines are not
present in a potential magnetic field. The fans and spines
therefore form the boundaries between domains, together
defining its skeleton (Priest, Bungey, & Titov 1997). A com-
plete characterization of a field’s connectivity follows from
a complete characterization of its fans and spines.

3. CHARACTERIZING THE SKELETON

3.1. Spine Sources

The first step in a general characterization is to locate all
of the null points of the potential field. In our general discus-
sion, each of the nulls will be given a unique index denoted
by the Greek variables �, �, or �. Negative and positive
nulls will be denotedA� and B�, respectively.

We illustrate our general formulation with an example
representing a possible coronal field. It is generated by six
flat source regions of assorted fluxes arranged haphazardly
on the z ¼ 0 plane, as shown in Figure 1. The potential field
contains four null points, all in the same plane as the sources
(z ¼ 0). These are two positive null points, B1 and B2, and
two negative null points,A3 andA4.

The next step in the analysis is to trace both spine field
lines from each null to their terminal sources.1 The spines of
a positive (negative) null terminate in positive (negative)

1 Hereafter, we will not distinguish between tracing a field line in the
direction parallel or antiparallel to B; ‘‘ forward ’’ will mean away from the
specified initial point.
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sources, called the spine sources of the null. The fan of a pos-
itive null, with spine sources Pa and Pb, will separate
domains originating in Pa from domains originating in Pb.
This follows from the fact that field lines in a neighborhood
of the fan surface will end in either of the spine sources,
depending on which side of the fan they occupy.

If both spines from a null terminate in the same source,
then the fan surface makes no actual division between
domains, and it is not part of the field’s skeleton.We refer to
these as internal nulls and consider them no further. If the
two spines go to different sources, the fan surface is part of
the field’s skeleton, and this is a boundary null. Figure 1

shows the spine field lines (solid lines), demonstrating that
all four nulls are boundary nulls.

3.2. Fan Sectors

Fan field lines leave a null in all directions in its fan plane,
each terminating at a fan source of sign opposite to that of
the spine source. If all of a fan’s field lines go to the same
source, it is an unbroken fan. An unbroken fan is, together
with its null point and source, a closed topologically spheri-
cal surface dividing the full volume into two subvolumes
containing the two spine sources. The fan source is the only
source shared by domains in both volumes. Null A4 in the
example has an unbroken fan going to source P1; its upper
half is shown in green in Figure 2. This surface separates N5

fromN4; in this case the domain P1–N5 is the only one inside
the closed surface.

We will separately analyze each of the subvolumes
defined by the unbroken fan. The exclusion of a star-shaped
volume adjoining one of the source regions will not affect
the connectivity of remaining volume. Once we have
excluded all of these, no unbroken fans remain in the sub-
volume under consideration. Denote byNs andN0 the num-
bers of sources and boundary nulls inside this subvolume.
The fan of each null is broken into two or more sectors,
according to the sources at its ends. Different sectors must
lie in different domains and must therefore be separated by a
separatrix surface. The single fan field line at the sector
boundary must therefore belong simultaneously to a posi-
tive fan and a negative fan. It is a separator field line or null-
null line, defined as the intersection of two fan surfaces.2

A negative null whose fan is divided into n sectors must
connect to n positive nulls through n different separators. Of
the four separators linking A3 to B1 and B2 the two above
z ¼ 0 are shown as magenta curves in Figure 3, while the
other two are their mirror images below z ¼ 0. Figure 4 is a
schematic depiction of how these four separators divide the
fan ofA3 into four sectors.

A sector from negative null A� will consist of field lines
terminating at this null and originating in a positive source

2 In a potential field separatrix surfaces intersect along a curve that is
therefore a field line. In more general fields they intersect along a ribbon of
finite width.

Fig. 1.—Six sources, arranged on the z ¼ 0 plane, are represented as
disks whose areas are proportional to their fluxes. Four nulls in the
potential field, also located at z ¼ 0, are shown with triangles. The spines
from each null are shown as solid curves.

Fig. 2.—Fan field lines from nulls B2 and A4 in the upper half-space z > 0. The lower half-space is a mirror reflection of this. The fan from A4 (green) is
unbroken—all field lines go to P1. The fan from B2 consists of two sectors, one going to N4 (blue) and the other to N6 (red ). One separator, going to A3

(magenta), divides these sectors above the plane; a second separator is a mirror image of this below z ¼ 0. The spines fromA3 are shown in cyan.
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Fig. 3.—Fan field lines from nullA3 similar to Fig. 2. Field lines from three sectors are colored blue (P3), red (P2), and green (P1). Only the upper portion of
this sector is shown. The blue and green sectors continue below z ¼ 0; a fourth sector located entirely within the lower half-space is a mirror image of the red
sector. Separators dividing these sectors are shown inmagenta, and the spines from the positive nulls are shown in cyan.

Fig. 4.—Schematic depiction of the fan surface from A3; a perspective view of its upper half is shown in Fig. 3. Colored lines correspond to those shown in
Fig. 3. Each of its four sectors is a quadrilateral bounded by 2 spines (cyan) and two separators (magenta).



Pa. It is bounded on two sides by separators S� and S� con-
necting A� to opposing nulls B� and B�. It is possible for
B� ¼ B� , but for the fan to be truly broken S� 6¼ S�. One
spine from each of the nulls B� and B� goes to Pa. These
form the other two edges of the sector. If B� ¼ B�, then
these are the same spine, as in the blue sector in Figure 3.
Even in these cases we will count the single spine as two dis-
tinct edges of the sector. Thus, each sector is a deformed
quadrilateral with edges being two separators and two
spines. Its vertices are three nulls and one source. The fan
surface is a union of sectors, and our analysis of domain
boundaries will follow from an analysis of all sectors.

3.3. The Domain Structure

The entire structure of flux domains, sectors, separators
and spines, and nulls and sources comprise a CW complex
(Munkres 1984). It is then possible to determine the number
of flux domains using Euler’s relation c� f þ e� v ¼ 0
describing the partition of space into c cells (domains), f
faces (sectors), e edges (separators and spines), and v verti-
ces (nulls and sources). The total number of sectors includes
those in positive fans and those in negative fans. In each fan
the number of sectors is equal to the number of separators
connecting to the null. Thus, the total number of sectors in
positive fans equals the total number of separators leaving
positive nulls. Similarly, the total number of sectors in
negative fans equals the total number of separators leaving
negative nulls. Every separator connects one positive null to
one negative null, so the number of separators leaving each
type of null is equal. Therefore, the total number of sectors
f ¼ 2Nnn is twice the number of separatorsNnn.

Every spine and every separator is an edge of at least one
sector. The first fact follows because every null must be con-
nected to at least two separators (lest its fan be unbroken).
Each separator lies at the edge of four sectors, two of which
will have the null’s spines at its edge. Thus, every spine is an
edge to two or more sectors. The second fact follows from
the observation that every separator, being the intersection
of two fan surfaces, is generically an edge to four sectors.
Since every null has exactly two spines, the total number of
spines is twice N0, the number of nulls with sectored fans
within the subvolume under consideration. This means that
the total number of edges, e, is the total number of separa-
tors plus the total number of spines: e ¼ Nnn þ 2N0.

Within the subvolume being considered, every source and
every null is a vertex. Since every source belongs to at least
two domains, it connects to at least one sector. Every null is
the vertex of at least six sectors. Thus, the total number of
vertices is the total number of nulls plus the total number of
sources: v ¼ N0 þNs.

Euler’s relation states c ¼ f � eþ v, which in turn implies

Nd ¼ Nnn �N0 þNs ; ð3Þ

where Nd ¼ the number of flux domains. In the example,
Ns ¼ 5 (excluding source N5), N0 ¼ 3 (excluding null A4),
and Nnn ¼ 4 (including reflection in z < 0). This leads to
Nd ¼ 6 domains. We will identify all of these domains
below.

The best way to identify domains is to consider how sec-
tors divide up the flux from each source. Field lines leave a
given source Pa in all directions, forming a topological ball.
Field lines from a given domain make up a double cone of
this ball with endpoints at each source of the domain. The

faces of this cone are made up of sectors. A domain connect-
ing source Pa to Nb must be bounded by both positive and
negative sectors. The negative sectors form a cone with Pa

at its apex; the positive sectors form a cone with Nb at its
apex. The two cones join along a closed curve consisting of
separators—separators are where positive and negative fan
surfaces intersect. Therefore, each flux domain is ringed by
exactly one closed curve of separators, or separator circuit.

To enumerate all possible separator circuits, we construct
a null graph whose vertices are the nulls and whose edges are
separators connecting pairs of nulls. In general, more than
one edge can connect a pair of vertices, making the con-
struction a multigraph in the terminology of graph theory.
We adopt the convention that edges incident on a vertex are
to be drawn in the order in which they occur within the fan.
We also notate the source connected by each fan sector
appearing between edges. With the sectors indicated this
way we call this a labeled null graph.

A domain connecting Pa to Nb corresponds to a unique
circuit in the null graph. This circuit appears within that
subgraph that includes only nulls for which Pa and Nb are
spine sources. In order for the circuit to pass from edge S�
to edge S�, they must be incident on vertex A� with only the
fan source Pa between them. Similarly, consecutive edges
must be incident on a negative vertex B� with only the fan
sourceNb between them.

Figure 5, for example, shows the circuit corresponding
to domainD3, linking P2 andN4, to be

A3 ! S1 ! B1 ! S3 ! A3 ! S4 ! B2 ! S2 ! A3 :

This same circuit can also be seen to enclose D4 linking P2

to N6, so the association between null circuits and domains
is not one to one. While every domain corresponds to a
unique separator circuit, a given circuit might correspond to
several domains. We elaborate on this relation further
below.

From the labeled null graph it is possible, using the rule
above, to build up the domain graph depicting all domains
and the sources they link. For a given pair of opposing
sources, Pa andNb, first extract the subgraph of nulls whose
spine sources include Pa or Nb. Then identify all circuits in
this subgraph whose consecutive edges enclose either fan
source Pa orNb. Each such circuit corresponds to a different
domain, which is then added to the domain graph. Once this
has been done for each and every pair of opposite sources,
the domain graph is complete. The null graph (Fig. 5, left
panel) generates the six domains shown in the right panel of
Figure 5. In this case there is one and only one domain con-
necting each opposing pair.

The general method of translating labeled null graphs to
domain graphs is demonstrated by applying it to a few more
simple cases. In all, there are four possible connected null
graphs having four edges or fewer, of which the left panel of
Figure 5 is one. The other three possibilities are shown in
Figure 6, along with the corresponding domain graphs.
Labeling is unnecessary since all possibilities are equivalent
in these simple graphs. The simplest, denoted (i), corre-
sponds to ‘‘ Sweet’s configuration ’’ with four sources and
two nulls (Sweet 1958; Gorbachev & Somov 1988). In a
coronal arrangement (described further in x 6) the nulls lie
on the source plane, z ¼ 0, and are connected by a single
separator above and its mirror image below. A second null
graph, denoted (iii), corresponds to the same domain graph.
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Fig. 6.—Three simple null graphs (left) and the domain graphs they generate (right)
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B1:P1/P2 B2: P2/P3A3: N6/N4

Fig. 5.—The labeled null graph (left) and domain graph (right) for the example. The vertices of the null graph are the three nulls B1, B2, and A3 (triangles);
its edges are the four separators, S1 . . .S4 (labeled ). Separators are incident on nulls in the counterclockwise order they appear from the reference spine.
Between the edges are listed the sources to which the corresponding sector connects. Each null’s spine sources are listed below it. The domain graph consists of
six domains (edges) linking five sources vertices. The domains are labeledD1 . . .D6.



It is possible for graph (iii) to arise from a pitchfork bifurca-
tion of one of the nulls in graph (i). This shows that it is
impossible to unambiguously deduce the structure of nulls
and separators from the domain graph alone. Graph (ii) is a
case where a pair of sources is connected by multiple
domains. These domains cannot even be separated by a
single fan, since that would be an internal null by definition.
A complex example in x 6.2 shows more examples where
multiple domains connect the same source pair.

4. QUANTIFYING THE DOMAIN FLUXES

The above procedure provides the connectivity of a
potential field for any arrangement of sources. Each of the
Nd domains appearing in the domain graph contains a cer-
tain magnetic flux. The flux  r in domain Dr connecting Pa

to Nb can be found by integrating Bn over the region on
either source skin @Ra or @Rb, which intersects Dr.
(Domains will be given unique indices and denoted by the
indices r or s; thus domain Dr is a synonym for Dab, in a
notation indicating the sources it connects.)

The domain fluxes  r are related to source fluxes �a by
the incidence matrix M

ðdÞ
ar of the domain graph (Seshu &

Reed 1961; Longcope 2001)

�a ¼
XNd

r¼1
M
ðdÞ
ar  r : ð4Þ

Element M
ðdÞ
ar of the incidence matrix is �1 if domain Dr

connects to source a, the sign of M
ðdÞ
ar being the sign of the

source. Row a has nonzero entries for each edge of the
domain graph incident on source a.

We remark in passing that when one removes a sub-
volume enclosed by an unbroken fan that is connected to
source b, it is also necessary to subtract flux from �b. In the
example D15 must have flux  15 ¼ j�5j. The flux of source
P1 must be modified �1  �1 �  15 to reflect the removal
of the domain from consideration.

4.1. Chords

Relation (4) cannot be inverted to solve for domain fluxes
since the matrix has rank Ns � 1, because of exact flux bal-
ance, which is in general less than theNd unknowns  r. This
corresponds to the fact that fluxes within circuits of the
domain graph can be varied without changing the source
fluxes �a. It is possible to identify Nc ¼ Nd �Ns þ 1
domains called chords, whose removal from the domain
graph (a process called ‘‘ pruning ’’) reduces it to a tree, a
graph without circuits. A tree is a connected graph with
Ns � 1 edges and a unique path connecting any pair of verti-
ces (Seshu & Reed 1961). We will denote the chord domains
Ds, where s ¼ s1; s2; . . ., and use indices i or j for them. The
set of chords fsigNc

i¼1 is not unique; however, we will assume
that a particular set has been selected. If the flux of every
chord domain is known, then the rest of the domain fluxes
may be found by solving equation (4).

The set fD1; D5g constitute chords for the domain graph
of the example (see Fig. 7). Their removal leaves a tree with
four edges connecting all five sources. Alternative chord sets
include fD2;D6g, fD1;D3g, and fD4;D5g.

In order to determine all domain fluxes, we must deter-
mine the fluxes of all Nc chord domains. Domain Dsi will
have the general structure discussed above, enclosed by two
faceted cones intersecting at a closed path of separators that
we shall call Qi. The paths Q1 and Q2 corresponding to the
chords D1 and D5 are shown on the right of Figure 7. The
field lines from domain Dsi must, in some sense, pass
through Qi in physical space.

To define this enclosure precisely it is necessary to exclude
from the volume a set of curves that we call flux tubes. For
each source there is one flux tube running from its source
skin to infinity along a path that does not intersect any other
sources or flux tubes. Once these curves are omitted from
the volume, no source may be completely enclosed and a
single-valued vector potentialAðxÞmay be defined such that
B ¼

D

� A. Integrating the vector potential around an infin-
itesimally small curve surrounding flux tube a will yield

Fig. 7.—Set of chords that reduced the domain graph to a tree. The chord domainsD1 andD5 are shown as dashed lines. The circuits corresponding to the
chords are shown as dashed triangles, with arrows indicating their sense of orientation. The null graph on the right shows the null circuits Q1 and Q2

corresponding to the chords.
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H
A x dl ¼ �a, the flux of the source to which the flux tube

connects.
The flux enclosed by Qi may be expressed in terms of the

vector potential

�i ¼
I
Qi

A x dl : ð5Þ

The exact value of this integral depends on the locations of
flux tubes. If the tube from source Pa is deformed so that it
cuts the curve Qi, then �i will change by �a, the flux inside
the tube.

Note that the exclusion of flux tubes makes each flux
domain closed—it closes at infinity. It is therefore possible
to define a loop vector Qis corresponding to loop Qi, where
Qis ¼ þ1 (=�1) if loop Qi links domain Ds once in the
right-hand (left-hand) sense. The sense of linkage depends
on the orientations of each closed curve. The domain’s
curve is oriented so that it goes from the positive to the
negative source; the loop Qi is oriented to make Qisi ¼ 1
(i.e., the chord domain is positively linked). The enclosed
flux can be simply written in terms of this vector:

�i ¼ Qi xw ¼
XNd

r¼1
Qir r : ð6Þ

Deforming a tube to cut through a path will change link-
ages thereby changing the vector Qis. In particular, if the
flux tube from source a cuts through Qi, then the row-vector
Qi is changed by adding or subtracting from it row a of the
incidence matrixM

ðdÞ
as . Because it was defined to enclose the

chord domain, it is possible to define the flux tubes to make
Qis ¼ �s; si . We will henceforth assume that some definition
of the flux tubes’ paths has been adopted, but not
necessarily this particular one.

4.2. Circuit Vectors

Suppose a removed domain Dsi is added back to the
pruned domain graph. Its return creates a unique circuit Ci

by providing an additional connection between its end-
points; the tree provides one and only one path between any
two vertices (Seshu & Reed 1961). Field lines from the
domains inCi form a closed path in physical space. The sep-
arator circuit Qi links this closed path exactly once; Qi is the
isolating loop for circuit Ci in the domain graph (Longcope
2001). Figure 8 shows how the circuitC2 links isolating loop
Q2 in our example.

We can define a circuit vector C
ðdÞ
si ¼ þ1 (=�1) if domain

Ds is traversed in the forward (backward) sense and =0 if
Ds 62 Ci. (Each graph has a set of circuit vectors. The super-
script d indicates that this is a circuit vector in the domain
graph.) The sense of circuitCi is defined to be forward along
its chord domain so that C

ðdÞ
sii
¼ þ1. It is evident that circuit

vectors are in the null space of the incidence matrix (Seshu
&Reed 1961)

XNd

s¼1
M
ðdÞ
as C

ðdÞ
si ¼ 0 ; i ¼ 1; 2; . . . ; Nc : ð7Þ

To see this, note that each vertex encountered by circuit Ci

is encountered along two different edges, once in the positive
and once in the negative sense.

Since the circuit Ci is linked once in the positive sense by
the isolating loop Qi, then

Qi xC
ðdÞ
i ¼

XNd

s¼1
QisC

ðdÞ
si ¼ 1 ; i ¼ 1; 2; . . . ; Nc : ð8Þ

Adding or subtracting rows of the incidence matrix to Qis

will not affect this relation since the circuit vectors are
orthogonal to these rows by equation (7).

Since Qi encloses domainDsi , which is in no other circuit,
it links no other circuit, i.e.,

Qi xC
ðdÞ
j ¼ �ij : ð9Þ

Expression (9) is independent of the flux-tube locations.
Thus, under all deformations the vector Qi is linearly inde-
pendent of all rows in the incidence matrix and of all other
vectors Qj. With fluxes defined by equation (5) and the iso-
lating matrix Qis defined consistently, it is now possible to
solve for the domain fluxes  s:

MðdÞ

Q

� �
xw ¼

U

W

� �
: ð10Þ

The composite matrix is of rank Nd and may be inverted
provided the vector of source fluxes �a sums to zero (this
must be so since all columns ofMðdÞ sum to zero).

4.3. The Null Circuits

The complete set of fluxes, �i, can be written in terms of
integrals along each separator, from the positive to the neg-

Fig. 8.—Views of the field lines in the domain circuit C2 (dark curves) and the corresponding isolating loop Q2 (light curves). The portion of Q2 below z ¼ 0
is shown as a dashed curve.
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ative null,

�i ¼
XNnn

�¼1
C
ðoÞ
i�

Z
S�

A x dl : ð11Þ

The matrixC
ðoÞ
i� consists of circuit vectors for the null graph,

defined by analogy with the circuit vectors of the domain
graph. Element C

ðoÞ
i� ¼ 1 (=�1) if the circuit Qi traces S�

from positive to negative null (negative to positive null),
andC

ðoÞ
i� ¼ 0 if S� 62 Qi.

TheNc rows of C
ðoÞ
i� are linearly independent. If they were

not, it would be possible to construct a linear combination
of equation (11) that summed to zero. This would mean in
turn that the same linear combination of equation (6) would
yield zero, in direct contradiction of equation (9).

If the null graph, with Nnn edges and N0 vertices, consists
of k distinct components, then there are exactly
Nnn �N0 þ k independent circuits, i.e., circuits whose rows
are linearly independent (Seshu & Reed 1961). The number
of chords in the domain graph, and therefore the number of
isolating loops Qi, is

Nc ¼ Nd �Ns þ 1 ¼ Nnn �N0 þ 1 ; ð12Þ

using equation (3) for Nd . It is therefore necessary that
k ¼ 1—the null graph must be connected. It is also neces-
sarily true that the set of isolating loops Qi constitutes a
complete set of circuits in the null graph.

Circuit matrices, such as C
ðoÞ
i� , are useful in the analysis of

electrical networks. Consider a network whose wires corre-
spond to separators S�, with current I�. Kirchoff’s law for
these currents can be expressed in terms of the incidence
matrixM

ðoÞ
�� of the null graph

XNc

�¼1
M
ðoÞ
�� I� ¼ 0 ; � ¼ 1; 2; . . . ; N0 : ð13Þ

This means that the current vector I� lives in the null space
of the incidence matrix and can be expanded in terms of the
circuit vectors

I� ¼
XNc

i¼1
C
ðoÞ
i� Ii ; ð14Þ

which form a basis of the null space. This relationship may
be inverted

Ii ¼
XNnn

�¼1
Ei�I� ; ð15Þ

where chords have been used to define a Ei� such that
Ei� ¼ C

ðoÞ
i� when � ¼ �i and is zero otherwise.

5. FLUX-CONSTRAINED MINIMIZATION

The formalism developed above can be used to derive a
class of nonpotential magnetic fields related to the potential
field. The nonpotential fields, called flux-constrained fields,
have the same domains as the potential field but with differ-
ent domain fluxes. Each field is defined to minimize the
magnetic energy subject to constraints on its domain fluxes.
This minimization was performed in Longcope (2001) and
will be described here only briefly in order to show that the
construction is independent of the choice of chords.

The magnetic energy is expressed as a functional of the
vector potential

WfAg ¼ 1

8�

Z
j

D

� Aj2d3x : ð16Þ

The minimization is performed by requiring W to be
stationary under variations of vector potentialA.

Constraint functionals must be added toW to ensure that
the variations do not change the fluxes in any domains. The
complete set of Nd domain fluxes can be specified by fixing
the fluxes inNc ¼ Nd �Ns þ 1 isolating loops �i, which are
defined by the set of chord domains fsigNc

i¼1. The system of
flux restrictions can be incorporated into a constraint func-
tional usingNc undetermined multipliers 	i:

GfAg �
X
i

	i
XNnn

�¼1
C
ðoÞ
i�

Z
S�

A x dl �
XNd

s¼1
Qis s

" #
: ð17Þ

By definition G ¼ 0 for any field that satisfies all of the flux
constraints, regardless of the multipliers 	i.

It would appear that the results of this variation will
depend on the choice of chord domains, since this choice
enters the definition of G. This apparent arbitrariness may
be removed by using a larger set of undetermined multi-
pliers 	� defined on separators and chosen to obey
Kirchoff’s law (13). These can be related back to the 	i using
the matrix Ei�:

	i ¼
XNnn

�¼1
Ei�	� ;

XNnn

�¼1
M
ðoÞ
�� 	� ¼ 0 : ð18Þ

Using expression (18) in the constraint functional gives

GfAg �
XNnn

�¼1
	�

Z
S�

A x dl �
XNd

s¼1

XNc

i¼1
Ei�Qis

 !
L�s|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
 s

2
664

3
775 :
ð19Þ

The only portion of this expression that now depends on the
choice of chords is the matrix L�s, which does not affect the
variation.

Expression (19) assumes that the separators S� are curves,
as they are in a potential field. In amore general field separa-
trix surfaces will intersect along a separator ribbon of finite
width. The ribbon can be parameterized in terms of two
coordinates 0 � 
 � 1 and 0 � � � 1 corresponding to its
breadth and length, respectively. Defining a vector of unde-
termined functions 	�ð
Þ consistent with Kirchoff’s law for
each 
 yields a constraint functional

GfAg ¼
XNnn

�¼1

Z 1

0

	�ð
Þ
Z 1

0

@x�
@�

xAðxÞd� �
XNd

s¼1
L�s s

" #
d
 ;

ð20Þ

where x�ð�; 
Þ is the ribbon surface.
The variation of the constraint functional with respect to

the vector potential A provides a contribution to the cur-
rent. Following Longcope (2001), this contribution is

�G

�A
¼
XNnn

�¼1
	�ð
Þ

�� D

��

D



�� @x�
@�

�ðS�Þ ¼
XNnn

�¼1
J� ; ð21Þ
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where �ðS�Þ is a Dirac �-function with support only at the
separator surface. The current density J� carries a total
current

I� ¼
Z 1

0

	�ð
Þd
 ; ð22Þ

independent of coordinate � along the separator. The
separator ribbons are thus shown to be current carriers, so it
is not surprising that their undetermined multipliers must
obey Kirchoff’s law.

The full calculation of Longcope (2001) involves a second
constraint functional to keep the field from crossing S�. Its
contribution to the current is also localized to the separator
surface. The flux-constrained equilibrium is current-free in
each magnetic domain and carries current only along separa-
tor ribbons. The undetermined multipliers from this second
functional do not contribute to the total current. A second
variation with respect to the surface location x�ð�; 
Þ shows
that the currents must be in weak force balance (i.e., mag-
netic pressure balance).

While the resulting Euler-Lagrange equation cannot be
solved in practice, the arguments outlined above make clear
several features of solutions that might exist. Any choice of
domain chords produces an equivalent equation as we have
shown by removing explicit dependence on chords. Second,
every separator will be part of at least one isolating loop,
regardless of chord choice, so every separator will carry

some current in a general flux-constrained equilibrium.
Finally, the Euler-Lagrange equation involves undeter-
mined multipliers that generate separator current densities
satisfying Kirchoff’s law.

6. APPLICATION TO THE CORONA

The solar corona is often modeled using the potential field
arising from the measured photospheric magnetic field.
Observations provide the normal component of the mag-
netic field3 over some patch of the solar surface. If we
assume the patch to be planar, we can model the photo-
sphere as the z ¼ 0 plane, and the corona as the half-space
above it (z > 0). The measured field, Bzðx; yÞ, is often
observed to consist of concentrated flux regions surrounded
by areas of much weaker magnetic field (see Fig. 9).

To construct a model of the field topology we approxi-
mate the concentrations as isolated source regions. (The
procedure for making such an approximation, and its possi-
ble effect, will be treated in a subsequent work.) The boun-
dary condition Bzðx; y; 0Þ ¼ 0 can be satisfied without
introducing additional boundaries, by using the method of
images. The region z < 0 is included, and source skins are

3 Often the measured component is along the line of sight, which differs
from the vertical.We will not dwell on this difficulty here.

Fig. 9.—Portion of the full-disk magnetogram from Kitt Peak National Observatory on 1993 June 5. Gray scales indicate the strength of the line-of-sight
magnetic field, ranging between�200 and 200G. Labels indicate the 20 strongest flux concentrations in the field of view.
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continued to the underside of each source. The normal field
distribution Bn is taken to be reflectionally symmetric in z,
thus endowing the potential field with the symmetry
Bzðx; y;�zÞ ¼ �Bzðx; y; zÞ. Since the field is continuous out-
side of the sources, Bzðx; y; 0Þ ¼ 0 there by symmetry.
Whenever current is introduced in the corona, its reflection
is included in the mirror corona to maintain the symmetry.

This construction satisfies the assumptions of our model
provided we consider the corona as well as its mirror image,
z < 0. The mirror corona is an artifact of the method of
images and is not intended to represent the actual field
below the photosphere. Our scheme above will enumerate
flux domains in the mirror corona along with those in the
corona. The advantage of this construction is that our gen-
eral topological description need not distinguish between
purely coronal domains and domains bounded by z ¼ 0.

The fact that Bzðx; y; 0Þ ¼ 0 outside the sources means
that z ¼ 0 is a flux surface—all field lines within it remain
within it. Using the Euler characteristic, one can show
(Inverarity & Priest 1999) that Ns sources in the plane lead
to at least Ns � 2 null points exactly in the plane, called
photospheric nulls. Because of the reflectional symmetry, ẑz is
always an eigenvector of the Jacobian matrix of a photo-
spheric null. We designate those cases where ẑz is a spine
upright nulls and cases where ẑz is part of the fan prone nulls.
Upright nulls are always internal nulls since their spines are
mirror images of each other and will both go to the same
source. The application of Euler characteristics to the
photospheric fields states that the number of prone nulls,
which we will denoteNp0, is

Np0 ¼ Ns þNu0 � 2 ; ð23Þ

whereNu0 are the number of upright nulls.
It is possible for nulls to appear off of the z ¼ 0 plane, in

symmetric pairs above and below; the former are called
coronal nulls. If there are NB positive nulls and NA negative
nulls in the volume, then the Poincaré-Hopf theorem
requires (Inverarity & Priest 1999; Milnor 1965)

NB �NA ¼ Nþ �N� ; ð24Þ

where Nþ and N� are the numbers of positive and negative
sources. Unfortunately, there is no simple expression for the
total number of nulls NB þNA throughout the volume. If
all of the photospheric nulls have been found and they do
not satisfy expression (24), then theremust be nulls off of the
plane.

6.1. Footprints

It is often useful to map the magnetic domains on the
photospheric plane using their footprints, the intersection of
the domain with z ¼ 0 (Welsch & Longcope 1999). Each
footprint is a planar region bounded by spines and fan
traces, curves formed from the intersections of fan surfaces
with z ¼ 0. Each footprint can be connected to only two
sources of opposite sign, which appear as vertices of the
footprint. The other footprint vertices are the photospheric
nulls, including the upright nulls, which can appear as
corners where three or more fan sectors meet.

The number of footprints in a map is given by an applica-
tion of Euler’s relation with c ¼ 2 being the regions above
and below the photosphere. The number of footprints is

f ¼ e� vþ 2, which translates to

Nfp ¼ 3Np0 �Ns �Nu0 þ 2 ; ð25Þ

assuming all prone nulls are part of the skeleton. This uses
e ¼ 4Np0 since every prone photospheric null has two spines
and two fan traces, all of which are edges. Using relation
(23) gives the simple relationship

Nfp ¼ 2Np0 ; ð26Þ

which is natural, since every photospheric null abuts four
footprints, and every footprint must contain two nulls. The
example contains six footprints, shown in Figure 10, one for
each of the domains.

A purely coronal domain has no footprint and must have
a counterpart in the mirror corona. Assuming that no
domain has more than one footprint, the total number of
domains without footprints is

Nd �Nfp ¼ Nnn � ðN0 þ 2Np0Þ þNs :

Using expression (23) and denoting by N
ðcÞ
nn and N

ðcÞ
0 the

number of purely coronal separators and null points gives

Nd �Nfp ¼ 2ðNðcÞnn �Np0 �N
ðcÞ
0 þ 1Þ �Nu0 : ð27Þ

The factor in parentheses is the total number of separator
circuits purely in the corona. Any purely coronal domain
must be encircled by a purely coronal separator circuit Qi.

By the symmetry of the problem the flux through a purely
coronal isolating loop must match that through its mirror
image. Subtracting from the total number of isolating loops,
Nc, those strictly below the corona gives a set of

N
ðcÞ
c ¼ N

ðcÞ
nn �N

ðcÞ
0 ð28Þ

isolating loops whose flux may be fixed independently.
Independent specification of currents on these circuits is
equivalent to specifying current on each coronal separator
subject to Kirchoff’s law at each coronal null. To satisfy the

Fig. 10.—Footprint map from the example. Positive and negative
sources are shown with plus signs and crosses, respectively. Positive and
negative nulls are shown with downward and upward pointing triangles.
Solid lines show spines, and dashed lines show fan traces. Domains are
labeled, including Dx, connecting P1 to N5, which forms an isolated
subregion.
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symmetry mirror-coronal separators must carry current
opposite to their coronal image.

6.2. Realistic Example

To demonstrate the generality and power of this techni-
que, we apply it to a complex example modeling a real active
region. The magnetogram in Figure 9 shows the remnants
of an active region located near disk center. Twenty flux
concentrations (12 positive and eight negative) are labeled
in decreasing order of their total flux, from �1 ¼ 1:2� 1020

Mx to �20 ¼ 1:7� 1019 Mx. The collection has a net posi-
tive flux of 2:2� 1020 Mx (roughly 20% of the unsigned
flux). This means that infinity functions as a large negative
source. In spite of this large flux imbalance, we will charac-
terize the skeleton of the potential field from this collection
of sources.

To create a field model we place sources on a plane that is
tangent to the solar surface at the center of unsigned flux
(15�450 south, 18�450 west). Each source is a point whose
total flux and location match that of its corresponding con-
centration. The potential field from this distribution has 19
null points, all photospheric and prone, in accordance with
expression (23). There are 11 positive nulls, B1–B11, and
eight negative nulls, A12–A19. The photospheric nulls there-
fore satisfy expression (24) where Nþ ¼ 12 and N� ¼ 9
(including the negative source at infinity) so no coronal nulls
are required. Nor do we find any other evidence for nulls
above the z ¼ 0 plane. Null B5 contains the only unbroken
fan, enclosing the domain connecting P19 to infinity.

Figure 11 shows the footprints of this model field
including source P19 and null B5, which are henceforth
removed from consideration. The remaining N0 ¼ 18
nulls and Ns ¼ 20 sources compose Nfp ¼ 36 footprints,
in agreement with expression (26). Each of these is
present in the map, albeit difficult to count. Null A19 is
360 Mm to the northeast and not shown; its spines con-
nect to N10 and infinity.

The fan surface of each of the N0 ¼ 18 nulls was scanned
to determine their fan sources and locate separators. This
procedure identified N

ðcÞ
nn ¼ 33 coronal separators, most of

which are shown in Figure 12. Counting their mirror images

there areNnn ¼ 66 separators in the total field. The scanning
process also identified 52 pairs of connected sources, indi-
cated in Table 1; a fan source is connected to each of the
spine sources.

A list of connected pairs does not completely enumerate
the domains. According to equation (3), there are Nd ¼ 68
distinct domains, so many pairs are clearly connected by
multiple domains. Subtracting from these theNfp ¼ 36 foot-
print domains leaves 32 domains that do not intersect z ¼ 0.
By symmetry these must be 16 purely coronal domains and
16 mirror images. The sum of footprint and coronal
domains, 52, exhausts all of the connections found in the
null scan. Therefore, no pair is connected by multiple foot-

Fig. 11.—Domain footprints from 20 sources representing the magneto-
gram 9. Axes are inMm from the point of tangency. Symbols are defined as
in Fig. 10.

Fig. 12.—Perspective view of 28 of the 33 coronal separators
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prints or coronal domains. The sources are interconnected
in roughly half of the 99 possible ways that 11 positive
sources might be connected to the nine negative sources.

Each coronal domain is enclosed by one of the
N
ðcÞ
nn �N0 þ 1 ¼ 14 coronal separator circuits. According to

expression (28) there are N
ðcÞ
c ¼ 33 isolating loops that may

be independently constrained. Indeed, since there are no
coronal nulls, a set of independent isolating loops can be
formed by each coronal separator and its mirror image. The
sources admit a 33-dimensional space of flux-constrained
equilibria containing current sheets flowing along the 33
separators.

7. DISCUSSION

We have presented a general scheme for completely char-
acterizing the connectivity of a certain class of magnetic
fields. We assumed that the field is anchored in a set of dis-
crete sources, which permits a rigorous definition of connec-
tivity. We began with a general characterization of the
skeleton of a potential magnetic field in an unbounded
three-dimensional volume. The domain graph of this field
followed unambiguously from its null graph. We then
showed that all domain fluxes could be calculated from the
integrals of the vector potential along the separators. To
perform the calculation it was necessary to choose a set of
chord domains for the domain graph. These correspond to
a set of circuits in the null graph, known as isolating loops.
Finally, we showed how the class of nonpotential fields
known as flux-constrained equilibria could be generated
using constraints on the fluxes through each isolating loop.
This set of constraints is not unique, depending as it does on
the choice of chord set. We showed, however, that the equa-
tion for the flux-constrained equilibrium did not depend on
the choice of chord set and was therefore unique.

Our assumption of isolated sources is clearly an approxi-
mation to the actual solar magnetic field. Deep observations
show weak vertical fields in even the quietest portions of the
solar photosphere (see, e.g., Zwaan 1987). This has led sev-
eral investigators to abandon the assumption and consider a
continuous photospheric flux distribution Bzðx; y; 0Þ.
Unfortunately, in such a continuously anchored field it is

not possible to group field lines according to their terminal
sources, and the field will not have separatrix surfaces of the
type we have considered. It is possible to define a separatrix
as the location of a discontinuity in the photospheric
mapping. These are far less numerous features than the
separatrices in our model; a bipolar distribution, such as
Figure 9, is unlikely to have any.

Studies of continuously anchored fields have revealed fea-
tures called quasiseparatrix layers (QSLs; Démoulin et al.
1996), where the mapping is continuous but severely dis-
torted. These features can be shown to become separatrices
in the limit that the photospheric flux distribution becomes
discrete. The number of QSLs in a field and their location
will, however, depend on the exact degree of mapping dis-
tortion defined to be ‘‘ severe.’’ This along with the need to
trace every field line makes QSLs less practical as an analysis
tool. Since they correspond to separatrices in a certain limit,
it seems useful to work in that limit if only to simplify com-
putations. This limit is one of discrete sources, the limit in
which we have defined our model.

The set of nonpotential fields we derive are a subset of
the possible flux-constrained equilibria (Longcope 2001).
Our general method requires the nonpotential field to
have the same connectivity as the potential field although
with different amounts of flux in each domain. By setting
a domain flux to zero we may effectively remove it while
still satisfying the requirements of our method. Within
this multidimensional space of magnetic equilibria it is
possible to estimate magnetic energies in the immediate
neighborhood of the potential field in terms of mutual
and self-inductances (Longcope & Cowley 1996). This
provides a valuable system in which to study magnetic
processes such as flare energetics and magnetic
reconnection.
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referee for helpful comments. This work was supported in
part by AFOSR grant F49620-00-1-0128 and in part at the
Institute for Theoretical Physics, which is supported by the
National Science Foundation under grant PHY99-07949.

TABLE 1

The 53 Flux Domains in the 20 Source Magnetic Field

Negative Source

Positive Source N03 N05 N07 N08 N10 N14 N16 N17 1

P01....................... F * F * C * * C F

P02....................... * C C * C F * C F

P04....................... F F F F * * F * *

P06....................... * * F * C * * C F

P09....................... * F * F * * F * *

P11....................... * * F * C * * C F

P12....................... F C C * * F F * *

P13....................... * F * * * F F * *

P15....................... F C C * C F * C F

P18....................... * * F * F * * F F

P19....................... * * * * * * * * X

P20....................... * F F * F F * F F

Note.—52 domains are found in the text plus the domain linking P19 to 1, listed with an X,
which is enclosed by an unbroken fan. Domains with footprints appear as F, while purely coronal
domains appear as C. Asterisks represent a lack of connection between a pair of sources.
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APPENDIX

A BRIEF GLOSSARY OF TOPOLOGICAL TERMS

Boundary null (x 3.1).—Any null having two distinct spine
sources and whose fan surface is therefore a separatrix
(Antonym: internal null).

Broken fan (x 3.2).—A fan surface whose field lines con-
nect to two or more distinct fan sources, which is therefore
broken into fan sectors by separators. (Antonym: unbroken
fan).

Chord set (x 4.1).—A set of edges (the chords) of a graph
whose removal reduces the graph to a tree.

Circuit vector (x 4.2).—A column vector corresponding to
one circuit of a graph. It has one element for each edge of
the graph:C si 6¼ 0 if edge s 2 circuit i.

Domain (x 2).—A continuous volume of field lines con-
necting a pair of sources.

Fan sector (x 3.2).—A contiguous portion of a fan surface
all of whose field lines end at the same fan source.

Fan source (x 3.2).—The source lying at the other end of a
fan field line from the null.

Flux tube (x 4.1).—An open curve connecting a source to
infinity.

Footprint (x 6.1).—The two-dimensional regions formed
by the intersection of a domain with the photospheric plane
of reflectional symmetry z ¼ 0.

Internal null (x 3.1).—A null point for which both spine
sources are the same, so its fan surface is not a separatrix.
(Antonym: boundary null).

Isolating loop (x 4.2).—A closed curve in space that links
only one domain circuit exactly once.

Null graph (x 3.3).—A schematic depiction of a field’s
nulls and separators.

Photospheric null (x 6).—A null located within the plane
of reflectional symmetry z ¼ 0. (Antonym: coronal null).

Prone null (x 6).—A photospheric null whose spine lies in
the photosphere. (Antonym: upright null).

Skeleton (x 2).—The collection of separatrices and sepa-
rators that divides the volume into its domains.

Source skin (x 2).—The closed surface surrounding a
source.

Spine source (x 3.1).—The source at the end of a spine
opposite to the null point.

Unbroken fan (x 3.2).—A fan surface for which every field
line connects to the same fan source. (Antonym: broken fan).

Upright null (x 6).—A photospheric null whose spine is ẑz. It
is always an internal null. (Antonym: prone null).
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