On the adjoint representation of Hopf algebras

Adam Jacoby

Temple University
Outline

1 Background and motivation

2 The Hopf annihilator of the adjoint representation

3 Conjugacy classes
Outline

1 Background and motivation

2 The Hopf annihilator of the adjoint representation

3 Conjugacy classes
Outline

1. Background and motivation

2. The Hopf annihilator of the adjoint representation

3. Conjugacy classes
Throughout the talk we will use the following notation.

- \mathbb{K} will be a field with char $\mathbb{K} = p \geq 0$

- $(.)^* := \text{Hom}_\mathbb{K}(., \mathbb{K})$ will denote the \mathbb{K}-linear dual

- G will denote a finite group

- H will denote an arbitrary Hopf \mathbb{K}-algebra

- $(.)^+ := \ker \epsilon$ will denote the augmentation ideal
The adjoint representation of a group

A group G acts on its self by conjugation.

$$gh = ghg^{-1} \quad (g, h \in G)$$

Extending \mathbb{K}-linearly gives an action of $\mathbb{K}G$ on itself.

Definition.
The group algebra equipped with this action will be called the *adjoint representation*, denoted $\text{ad} \mathbb{K}G$.

Adam Jacoby 4/17/16 University of Washington
On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

The group picture

Theorem.

\[\text{ad}_K G \text{ is completely reducible} \quad \leftrightarrow \quad G \text{ has a central Sylow } p\text{-subgroup} \]

\[\text{ad}(K G / \text{rad } K G) \text{ is completely reducible} \quad \leftrightarrow \quad G \text{ has a normal Sylow } p\text{-subgroup} \]

Definition.

A module \(V \) has the Chevalley property if \(T(V) := \bigoplus_{n \in \mathbb{N}} V \otimes_n \) is completely reducible.
The group picture

Theorem.

- \(\text{ad}_K G \) is completely reducible
- \(\text{ad}(K^G/ \text{rad } K^G) \) is completely reducible
- \(G \) has a central Sylow \(p \)-subgroup
- \(G \) has a normal Sylow \(p \)-subgroup

Definition.

A module \(V \) has the Chevalley property if \(T(V) := \bigoplus_{n \in \mathbb{N}} V^\otimes n \) is completely reducible.
The group picture

Theorem.

<table>
<thead>
<tr>
<th>ad(\mathbb{K}G) is completely reducible</th>
<th>ad(\mathbb{K}G) has the Chevalley property</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>ad((\mathbb{K}G/ \text{rad} \mathbb{K}G)) is completely reducible</td>
<td>Completely reducible modules have the Chevalley property</td>
</tr>
</tbody>
</table>

Definition.

A module \(V\) has the *Chevalley property* if \(T(V) := \bigoplus_{n \in \mathbb{N}} V^{\otimes n}\) is completely reducible.
The group picture

Theorem.

\[
\begin{align*}
\text{ad} K G & \text{ is completely reducible} \\
\text{ad}(K G / \text{rad} K G) & \text{ is completely reducible} \\
\text{ad} K G & \text{ has the Chevalley property} \\
\text{Complete reducible modules have the Chevalley property}
\end{align*}
\]

Classification Theorem

Michler 86

Definition.

A module \(V \) has the *Chevalley property* if

\[
T(V) := \bigoplus_{n \in \mathbb{N}} V \otimes^n \text{ is completely reducible.}
\]
Components of the proof of the top implication

Sketch of proof

1. The largest Hopf ideal of KG that annihilates $\text{ad}KG$ is:

$$KG(KZ(G))^+$$
Components of the proof of the top implication

Sketch of proof

1. The largest Hopf ideal of $\mathbb{K}G$ that annihilates $\text{ad} \mathbb{K}G$ is:

 $\mathbb{K}G(\mathbb{K}Z(G))^+$

2. $\text{ad} \mathbb{K}G$ completely reducible implies p does not divide the order of any conjugacy class
Components of the proof of the top implication

Sketch of proof

1. The largest Hopf ideal of $\mathbb{K}G$ that annihilates $\text{ad}\mathbb{K}G$ is:

 $$\mathbb{K}G(\mathbb{K}Z(G))^+$$

2. $\text{ad}\mathbb{K}G$ completely reducible implies p does not divide the order of any conjugacy class.

3. (2) implies p does not divide $|G/Z(G)|$.
Components of the proof of the top implication

Sketch of proof

1. The largest Hopf ideal of $\mathbb{K}G$ that annihilates $\text{ad}\mathbb{K}G$ is:
 $$\mathbb{K}G(\mathbb{K}Z(G))^+$$

2. $\text{ad}\mathbb{K}G$ completely reducible implies p does not divide the order of any conjugacy class

3. (2) implies p does not divide $|G/Z(G)|$

4. (3) implies $\text{ad}\mathbb{K}G$ has the Chevalley property
Components of the proof of the top implication

Sketch of proof

1. The largest Hopf ideal of $\mathbb{K}G$ that annihilates $\text{ad}\mathbb{K}G$ is:

 $$\mathbb{K}G(\mathbb{K}Z(G))^+$$

2. $\text{ad}\mathbb{K}G$ completely reducible implies p does not divide the order of any conjugacy class

3. (2) implies p does not divide $|G/Z(G)|$

4. (3) implies $\text{ad}\mathbb{K}G$ has the Chevalley property
A Hopf algebra H acts on its self via the adjoint action.

$$hk = h_{(1)} k S(h_{(2)}) \quad (h, k \in H)$$

Definition

The Hopf algebra equipped with this action will be called the *adjoint representation*, denoted $\text{ad} H$.

Adam Jacoby 4/17/16 University of Washington
A Hopf algebra H acts on itself via the adjoint action.

$$hk = h_{(1)} k S(h_{(2)}) \quad (h, k \in H)$$

Definition

The Hopf algebra equipped with this action will be called the *adjoint representation*, denoted $\text{ad}H$.

- For $I \leq H$ an ideal, H/I will denote the largest Hopf ideal contained in I.
A Hopf algebra H acts on its self via the adjoint action.

$$hk = h_{(1)}kS(h_{(2)}) \quad (h, k \in H)$$

Definition

The Hopf algebra equipped with this action will be called the *adjoint representation*, denoted $\text{ad} H$.

- For $I \leq H$ an ideal, $\mathcal{H} I$ will denote the largest Hopf ideal contained in I.
- For $A \subseteq H$ a subalgebra, $\mathcal{H} A$ will denote the largest Hopf subalgebra contained in A.
A Hopf algebra H acts on its self via the adjoint action.

$$h k = h_{(1)} k S(h_{(2)}) \quad (h, k \in H)$$

Definition

The Hopf algebra equipped with this action will be called the *adjoint representation*, denoted $\text{ad}H$.

- For $I \leq H$ an ideal, $\mathcal{H}I$ will denote the largest Hopf ideal contained in I.
- For $A \subseteq H$ a subalgebra, $\mathcal{H}A$ will denote the largest Hopf subalgebra contained in A.
- Let $\zeta(H)$ denoted the largest Hopf subalgebra contained in the center of H.
The Hopf annihilator of the adjoint representation

Motivation

Theorem 1. (J.)

Let H be a Hopf algebra that satisfies one of the following conditions:

1. H is finite-dimensional or
2. the coradical of H is cocommutative (e.g., H is cocommutative or pointed).

Then the Hopf annihilator of the adjoint representation is given by $\mathcal{H}(\text{ann}^{\text{ad}}H) = H\zeta(H)^+$.
The proof: Coinvariants I

- Let $\overline{H} = H/\mathcal{H}(\text{ann} \, \text{ad} \, H)$
The proof: Coinvariants I

• Let $\overline{H} = H / H(\text{ann}^{\text{ad}} H)$

• H becomes a left \overline{H}-comodule via

$(\overline{\cdot} \otimes \text{Id}) \circ \Delta : H \to \overline{H} \otimes H$ i.e. $h \mapsto \overline{h}(1) \otimes h(2)$
The proof: Coinvariants I

- Let $\overline{H} = H / \mathcal{H}(\text{ann} \, \text{ad} \, H)$

- H becomes a left \overline{H}-comodule via
 \[(- \otimes \text{Id}) \circ \Delta : H \to \overline{H} \otimes H \text{ i.e. } h \mapsto \overline{h}(1) \otimes h(2)\]

- Let $\text{co} \overline{H} H := \{ h \in H | \overline{h}(1) \otimes h(2) = 1 \otimes h \}$
The proof: Coinvariants I

- Let \(\overline{H} = H / \mathcal{H}(\text{ann}^{\text{ad}} H) \)

- \(H \) becomes a left \(\overline{H} \)-comodule via
\[
(\ - \otimes \text{Id} \) \circ \Delta : H \to \overline{H} \otimes H \text{ i.e. } h \mapsto \overline{h}(1) \otimes h(2)
\]

- Let \(^{co\overline{H}}H := \{ h \in H | \overline{h}(1) \otimes h(2) = 1 \otimes h \} \)

- \(\zeta(H)^+ \subseteq \mathcal{H}(\text{ann}^{\text{ad}} H) \) since
\[
z h = z(1) h S(z(2)) = z(1) S(z(2)) h = \epsilon(z) h = 0
\]
The proof: Coinvariants I

- Let $\overline{H} = H / \mathcal{H}(\text{ann} \ ad \ H)$

- H becomes a left \overline{H}-comodule via $(\ - \otimes \text{Id}) \circ \Delta : H \rightarrow \overline{H} \otimes H \ \text{i.e.} \ h \mapsto \overline{h}(1) \otimes h(2)$

- Let $\text{co}^{\overline{H}}H := \{ h \in H | \overline{h}(1) \otimes h(2) = 1 \otimes h\}$

- $\zeta(H)^+ \subseteq \mathcal{H}(\text{ann} \ ad \ H)$ since
 $z \ h = z(1) h S(z(2)) = z(1) S(z(2)) h = \epsilon(z) h = 0$

- Now $\zeta(H) \subseteq \text{co}^{\overline{H}}H$ since
 $\overline{Z}(1) \otimes Z(2) = (Z(1) - \epsilon(Z(1))1 + \epsilon(Z(1))1) \otimes Z(2)$
 $= \epsilon(Z(1))1 \otimes Z(2) = 1 \otimes z$
The proof: Coinvariants II

- $co^H H \subseteq \mathcal{E}(H)$ since

$$ch = c_{(1)} h \epsilon(c_{(2)}) = c_{(1)} h S(c_{(2)}) c_{(3)} = c_{(1)} hc_{(2)} = \overline{c}_{(1)} hc_{(2)} = \overline{T} hc = hc$$
The proof: Coinvariants II

- \(\text{co}H \subseteq \mathcal{L}(H) \) since

\[
ch = c_{(1)} h\epsilon(c_{(2)}) = c_{(1)} hS(c_{(2)})c_{(3)} = c_{(1)} hc_{(2)} = \overline{c}_{(1)} hc_{(2)} = 1hc = hc
\]

- \(\text{co}H \) is a right subcomodule of \(H \), thus:

\[
\Delta(\text{co}H) \subseteq \text{co}H \otimes H \subseteq \mathcal{L}(H) \otimes H
\]
The proof: Coinvariants II

- \(\text{co}H \subseteq \mathcal{L}(H) \) since

\[
ch = c(1) h \epsilon(c(2)) = c(1) hS(c(2))c(3)
\]

\[= c(1) h c(2) = \overline{c}(1) h c(2) = \overline{\Delta} hc = hc\]

- \(\text{co}H \) is a right subcomodule of \(H \), thus:

\[
\Delta(\text{co}H) \subseteq \text{co}H \otimes H \subseteq \mathcal{L}(H) \otimes H
\]

Theorem. (Chirvasitu, Kasprzak. preprint)

\[
\zeta(H) = \{ h \in H | \Delta(h) \in \mathcal{L}(H) \otimes H \}
\]
The proof: Coinvariants II

- \(coH \subseteq \mathcal{L}(H) \) since

\[
ch = c(1)h\epsilon(c(2)) = c(1)hS(c(2))c(3)
\]

\[
= c(1)hc(2) = \bar{c}(1)hc(2) = \bar{1}hc = hc
\]

- \(coH \) is a right subcomodule of \(H \), thus:

\[
\Delta(coH) \subseteq coH \otimes H \subseteq \mathcal{L}(H) \otimes H
\]

Theorem. (Chirvasitu, Kasprzak. preprint)

\[
\zeta(H) = \{ h \in H | \Delta(h) \in \mathcal{L}(H) \otimes H \}
\]

- Giving \(coH \subseteq \zeta(H) \) and so \(coH = \zeta(H) \)
Recall the assumption of Theorem 1 that:

1. \(H \) is finite-dimensional or
2. the coradical of \(H \) is cocommutative.
Recall the assumption of Theorem 1 that:

1. H is finite-dimensional or
2. the coradical of H is cocommutative.

Either imply H is a faithfully coflat \overline{H}-comodule. Thus:
Recall the assumption of Theorem 1 that:

1. \(H \) is finite-dimensional or
2. the coradical of \(H \) is cocommutative.

Either imply \(H \) is a faithfully coflat \(\overline{H} \)-comodule. Thus:

- \(H \) is a faithfully flat \(\zeta(H) \)-module
- \(H \) is a faithfully coflat \(H/H\zeta(H)^+ \)-comodule
The proof: an equivalence

Theorem. (Takeuchi 79)

We have the following inverse maps:

\[
\begin{align*}
\{ & A \mid \text{a left } H\text{-comodule algebra} \\
& H \text{ faithfully flat over } A \} \quad \overset{\text{coH}/I}{\leftrightarrow} \quad \{ & I \mid \text{I left } H\text{-module coideal} \\
& H \text{ faithfully coflat over } H/I \}
\end{align*}
\]
The proof: an equivalence

Theorem. (Takeuchi 79)

We have the following inverse maps:

\[
\begin{align*}
\{ A \mid & \text{a left } H\text{-comodule algebra} \\
& \text{H faithfully flat over } A \} \xleftrightarrow{coH/I H} \\
& \{ I \mid \text{I left } H\text{-module coideal} \\
& \text{H faithfully coflat over } H/I \} \\
\end{align*}
\]

The result follows from the diagram below:

\[
\begin{array}{ccc}
\zeta(H) & \xleftarrow{\quad} & H_{\zeta}(H)^+ \\
& \parallel & \\
& \quad \xrightarrow{\quad} & H(ann^{ad}H)
\end{array}
\]
Consequences

For the remainder assume H is finite-dimensional.
Consequences

For the remainder assume H is finite-dimensional.

Theorem. (Rieffel 67)

For V an H-module:

$$\text{ann } T(V) = \mathcal{H}(\text{ann } V)$$

Thus V has the Chevalley property iff $H/(\mathcal{H} \text{ ann } V)$ is semisimple.
Consequences

For the remainder assume H is finite-dimensional.

Theorem. (Rieffel 67)

For V an H-module:

$$\text{ann } T(V) = \mathcal{H}(\text{ann } V)$$

Thus V has the Chevalley property iff $H/(\mathcal{H} \text{ ann } V)$ is semisimple.

Corollary 1. (J.)

$\text{ad } H$ has the Chevalley property iff $H/H\zeta(H)^+$ is semisimple.
Consequences

For the remainder assume H is finite-dimensional.

Theorem. (Rieffel 67)

For V an H-module:

$$\text{ann } T(V) = \mathcal{H}(\text{ann } V)$$

Thus V has the Chevalley property iff $H / (\mathcal{H} \text{ ann } V)$ is semisimple.

Corollary 1. (J.)

$\text{ad } H$ has the Chevalley property iff $H / H\zeta(H)^+$ is semisimple.

Corollary 2. (J.)

$\text{ad } H$ has the Chevalley property implies H is unimodular.
Now $\text{ad} H$ can be viewed as a right H-comodule with structure map Δ. With this $\text{ad} H$ becomes a Yetter-Drinfeld module, thus it is natural to consider the Drinfeld double.
Review: Drinfeld double

Now $\text{ad} H$ can be viewed as a right H-comodule with structure map Δ. With this $\text{ad} H$ becomes a Yetter-Drinfeld module, thus it is natural to consider the Drinfeld double.

Definition.

The Drinfeld double of H is the Hopf algebra $D(H)$. The coalgebra structure of $D(H)$ is given by:

$$D(H)^{\text{coalg}} \cong H^{*\text{cop}} \otimes H$$

The element $f \otimes h$ is denoted $f \triangleright \triangleleft h$. The multiplication is given by:

$$(f \triangleright h)(g \triangleright k) = f(h(1) \rightarrow g \leftarrow S^{-1}(h(3))) \triangleright h(2)k$$
Conjugacy class definition

The Drinfeld double acts on H via the action below:

$$(f \Join h).k = (^h k) \leftarrow S^{-1}(f) \quad (f \in H^* h, k \in H)$$
The Drinfeld double acts on H via the action below:

$$(f \otimes h).k = (h^k) \leftarrow S^{-1}(f) \quad (f \in H^* h, k \in H)$$

Definition. (Cohen, Westreich 2010)

If H is a completely reducible $D(H)$-module then we say a **conjugacy class** is a simple $D(H)$-submodule of H.
The Drinfeld double acts on H via the action below:

$$(f \otimes h).k = (^h k) \leftarrow S^{-1}(f) \quad (f \in H^*h, k \in H)$$

Definition. (Cohen, Westreich 2010)

If H is a completely reducible $D(H)$-module then we say a *conjugacy class* is a simple $D(H)$-submodule of H.

Example: group algebras

The action of $D(\mathbb{K}G)$ on $\mathbb{K}G$ is completely reducible. The conjugacy classes, as defined above, are the modules arising from $D(\mathbb{K}G)$ acting as above on the \mathbb{K}-span of the classical conjugacy classes.
Results on conjugacy classes

Proposition 1. (J.)

For H a finite-dimensional Hopf algebra:

1. If H is a completely reducible $D(H)$-module then H is cosemisimple.
2. If H is cosemisimple and $\text{ad} H$ is a completely reducible then H is a completely reducible $D(H)$-module.
Results on conjugacy classes

Proposition 1. (J.)

For H a finite-dimensional Hopf algebra:

1. If H is a completely reducible $D(H)$-module then H is cosemisimple.
2. If H is cosemisimple and $\text{ad} H$ is a completely reducible then H is a completely reducible $D(H)$-module.

Theorem 3. (J.)

Let H be a cosemisimple, involutory Hopf algebra with $\mathbb{K} = \overline{\mathbb{K}}$ then $\text{ad} H$ completely reducible implies char \mathbb{K} does not divide the dimension of any of the conjugacy classes.

