Morita Equivalences, Morita contexts and Hammers

Adam Jacoby

Temple University
Outline

1 Definitions

2 Examples

3 Properties and Uses

4 Why do I care?
Outline

1 Definitions

2 Examples

3 Properties and Uses

4 Why do I care?
Outline

1 Definitions
2 Examples
3 Properties and Uses
4 Why do I care?
Outline

1 Definitions
2 Examples
3 Properties and Uses
4 Why do I care?
A *Morita equivalence* is a lot like a hammer in that it is a tool and not an end in itself. This talk will describe to you what a hammer is, give some examples of hammers, explain how to use a hammer, and show some of the cool stuff you can build with them.
A *Morita equivalence* is a lot like a hammer in that it is a tool and not an end in itself. This talk will describe to you what a hammer is, give some examples of hammers, explain how to use a hammer, and show some of the cool stuff you can build with them.

Definition: Hammer (Noun)

A *hammer* is a tool characterized by a hard roughly cylindrical head adhered orthogonally to the top of a long shaft.
Notation

- K a field (Though much of what I say will work for K a commutative ring)
- A and B K-algebras with unit
- M, N, P and Q will always be modules.
- A left subscript of a ring will denote a left module and a right subscript a right module (i.e. $A_N B$ means M is an (A, B) bimodule)
Morita Equivalence

A *Morita equivalence* is an ordered sextuplet
\((A, B, _A P_B, _B Q_A, f: _A P_B \otimes_B _B Q_A \to A, g: _B Q_A \otimes_A _A P_B \to B)\)

Where \(f\) and \(g\) are respectively \((A - B)\) and \(B - B\) bimodule maps making the diagrams below commute.
A Morita equivalence is an ordered sextuplet
\((A, B, A P_B, B Q_A, f : A P_B \otimes_B B Q_A \rightarrow A, g : B Q_A \otimes_A A P_B \rightarrow B)\)

Where \(f\) and \(g\) are respectively \((A - B)\) and \(B - B\) bimodule maps making the diagrams below commute.

\[
\begin{align*}
(A P_B \otimes_B B Q_A) \otimes_A A P_B & \xrightarrow{f \otimes \text{Id}_P} A \otimes_A A P_Q \\
A P_B \otimes_B (B Q_A \otimes_A A P_B) & \xrightarrow{\text{Id}_P \otimes g} A P_B \otimes_B B \\
A P_B \otimes_B B & \xrightarrow{\text{Id}_P} P
\end{align*}
\]
Main definition

Definition: Morita equivalent

A and B are Morita equivalent if there exists a sextuplet:
\((A, B, A P_B, B Q_A, f : A P_B \otimes_B B Q_A \to A, g : B Q_A \otimes_A A P_B \to B)\)

\(f\) and \(g\) are respectively \((A - B)\) and \(B - B\) bimodule isomorphisms satisfying the below ”associativity” diagrams.
Category theory definition

Definition: R-mod

Given a ring R we can construct a category R-mod.

- Objects are left R modules.
- Morphisms are left R-linear maps.
Definition: R-mod

Given a ring R we can construct a category R-mod.

- Objects are left R modules.
- Morphisms are left R-linear maps.

Definition: Morita equivalent

A and B Morita equivalent if there is an equivalence of categories between A-mod and B-mod.
Definition: \(R \)-mod

Given a ring \(R \) we can construct a category \(R \)-mod.
- Objects are left \(R \) modules.
- Morphisms are left \(R \)-linear maps.

Definition: Morita equivalent

\(A \) and \(B \) Morita equivalent if there is an equivalence of categories between \(A \)-mod and \(B \)-mod.

Definition: Equivalence of categories

Two categories \(\mathcal{C} \) and \(\mathcal{D} \) are equivalent if there exists functors \(F : \mathcal{C} \to \mathcal{D} \) and \(G : \mathcal{D} \to \mathcal{C} \) such that \(FG \cong \text{Id}_D \) and \(GF \cong \text{Id}_C \).
Sketch of proof of equivalence

Ring theory definition \Rightarrow Category theory definition
Sketch of proof of equivalence

Ring theory definition ⇒ Category theory definition

- Define $F : A\text{-mod} \rightarrow B\text{-mod}$ by $A M \mapsto B Q_A \otimes_A A M$
 $h \mapsto (id_Q \otimes h)$
- Define $G : B\text{-mod} \rightarrow A\text{-mod}$ by $B N \mapsto A P_B \otimes_B B N$
 $h \mapsto (id_P \otimes h)$
Sketch of proof of equivalence

Ring theory definition \(\Rightarrow\) Category theory definition

- Define \(F : \text{A-mod} \to \text{B-mod}\) by
 \[A M \mapsto B Q_A \otimes_A A M\]
 \[h \mapsto (\text{id}_Q \otimes h)\]

- Define \(G : \text{B-mod} \to \text{A-mod}\) by
 \[B N \mapsto A P_B \otimes_B B N\]
 \[h \mapsto (\text{id}_P \otimes h)\]

- The natural transformation \(\eta : FG \cong \text{Id}_{\text{B-mod}}\) is given by
 \[\eta_N = g \otimes_B \text{Id}_N : FG(N) = (B Q_A \otimes_A A P_B) \otimes_B B N \to N.\]
Sketch of proof of equivalence

Ring theory definition \Rightarrow Category theory definition

- Define $F : \text{A-mod} \rightarrow \text{B-mod}$ by $A M \mapsto B Q_A \otimes_A A M$
 $h \mapsto (\text{id}_Q \otimes h)$

- Define $G : \text{B-mod} \rightarrow \text{A-mod}$ by $B N \mapsto A P_B \otimes_B B N$
 $h \mapsto (\text{id}_P \otimes h)$

- The natural transformation $\eta : FG \cong \text{Id}_{\text{B-mod}}$ is given by $\eta_N = g \otimes_B \text{Id}_N : FG(N) = (B Q_A \otimes_A A P_B) \otimes_B B N \rightarrow N$.

- The associativity diagrams give naturality.

- That g is an isomorphism gives that this is a natural isomorphism.
Sketch of proof of equivalence

Ring theory definition \Rightarrow Category theory definition

- Define $F : A\text{-mod} \rightarrow B\text{-mod}$ by $A M \mapsto B Q_A \otimes_A A M$
 $h \mapsto (id_{Q_A} \otimes h)$

- Define $G : B\text{-mod} \rightarrow A\text{-mod}$ by $B N \mapsto A P_B \otimes_B B N$
 $h \mapsto (id_{P_B} \otimes h)$

- The natural transformation $\eta : FG \cong \text{Id}_{B\text{-mod}}$ is given by $\eta_N = g \otimes_B \text{Id}_N : FG(N) = (B Q_A \otimes_A A P_B) \otimes_B B N \rightarrow N$.

- The associativity diagrams give naturality.

- That g is an isomorphism gives that this is a natural isomorphism.

- The proof follows symmetrically that $GF \cong \text{Id}_{A\text{-mod}}$.
Sketch of proof of equivalence

Category theory definition \Rightarrow Ring theory definition

- Take $F : A\text{-mod} \to B\text{-mod}$ and $G : B\text{-mod} \to A\text{-mod}$ to be functors and $\text{eta} : GF \to \text{Id}_A$ and $\mu : FG \to \text{Id}_B$ the natural transformations.
Sketch of proof of equivalence

Category theory definition \Rightarrow Ring theory definition

- Take $F : A\text{-mod} \rightarrow B\text{-mod}$ and $G : B\text{-mod} \rightarrow A\text{-mod}$ to be functors and $\eta : GF \rightarrow \text{Id}_A$ and $\mu : FG \rightarrow \text{Id}_B$ the natural transformations.
- Define $BQ_A := F(A)$.
Sketch of proof of equivalence

Category theory definition \Rightarrow Ring theory definition

- Take $F : \text{A-mod} \to \text{B-mod}$ and $G : \text{B-mod} \to \text{A-mod}$ to be functors and $\eta : GF \to \text{Id}_A$ and $\mu : FG \to \text{Id}_B$ the natural transformations.
- Define $BQ_A := F(A)$. To get the right A-module structure on $F(A)$ F is fully faithful gives the bijection below $A \cong \text{Hom}_{A-mod}(A, A) \cong \text{Hom}_{B-mod}(F(A), F(A))$ explicitly a acts as the function $F(r_a)$
Sketch of proof of equivalence

Category theory definition \Rightarrow Ring theory definition

- Take $F : A\text{-mod} \to B\text{-mod}$ and $G : B\text{-mod} \to A\text{-mod}$ to be functors and $\eta : GF \to \text{Id}_A$ and $\mu : FG \to \text{Id}_B$ the natural transformations.
- Define $BQ_A := F(A)$. To get the right A-module structure on $F(A)$ F is fully faithful gives the bijection below $A \cong \text{Hom}_{A\text{-mod}}(A, A) \cong \text{Hom}_{B\text{-mod}}(F(A), F(A))$ explicitly a acts as the function $F(r_a)$
- We like likewise define $AP_B := G(B)$.
Sketch of proof of equivalence

Category theory definition \Rightarrow Ring theory definition

- Take $F : \text{A-mod} \to \text{B-mod}$ and $G : \text{B-mod} \to \text{A-mod}$ to be functors and $\eta : GF \to \text{Id}_\text{A}$ and $\mu : FG \to \text{Id}_\text{B}$ the natural transformations.

- Define $BQ_A := F(A)$. To get the right A-module structure on $F(A)$ F is fully faithful gives the bijection below $A \cong \text{Hom}_{\text{A-mod}}(A, A) \cong \text{Hom}_{\text{B-mod}}(F(A), F(A))$ explicitly a acts as the function $F(r_a)$

- We like likewise define $AP_B := G(B)$. Now f and g can be defined as η_A and μ_B.
Outline

1 Definitions

2 Examples

3 Properties and Uses

4 Why do I care?
Examples of Hammers

Examples

- Standard hammer
- Sledge hammer
- War Hammer

Non-examples

- Warhammer 40K
- M.C. Hammer
- Captain Hammer
- A hammer headed shark
Examples of Hammers

Examples

- Standard hammer
- Sledge hammer
- War Hammer

Non-examples

- Warhammer 40K
- M.C. Hammer
- Captain Hammer
- A hammer headed shark
Examples of Hammers

Examples
- Standard hammer
- Sledge hammer
- War Hammer

Non-examples
- Warhammer 40K
- M.C. Hammer
- Captain Hammer
- A hammer headed shark
Examples of Morita Equivalences

Example

A is Morita equivalent to $M_n(A)$.

Proof: Categorical

- Define $F: \text{A-mod} \rightarrow M_n(\text{A})-\text{mod}$ by $N \mapsto N^n$ with the standard matrix action on a vector.
- Define $G: M_n(\text{A})-\text{mod} \rightarrow \text{A-mod}$ by $M \mapsto E_{1,1}M$.
- $\eta: \text{Id}_{\text{A-mod}} = GF$ is given by $\eta_M(m) = E_{1,1}(m, m, \ldots, m)^T$.
- $\mu: \text{Id}_{M_n(\text{A})-\text{mod}} \rightarrow FG$ is given by $\eta_N(s) = (E_{1,1}s, E_{2,2}s, \ldots, E_{n,n}s)^T$.

Adam Jacoby 10/16/15 Graduate student seminar
Examples of Morita Equivalences

Example

A is Morita equivalent to $M_n(A)$.

Proof: Categorical

- Define $F : A\text{-mod} \rightarrow M_n(A)\text{-mod}$ by $N \mapsto N^n$ with the standard matrix action on a vector.
Examples of Morita Equivalences

Example

A is Morita equivalent to $M_n(A)$.

Proof: Categorical

- Define $F : A\text{-mod} \rightarrow M_n(A)\text{-mod}$ by $N \mapsto N^n$ with the standard matrix action on a vector.
- Define $G : M_N(A)\text{-mod} \rightarrow A\text{-mod}$ by $M \mapsto E_{1,1}M$.

Examples of Morita Equivalences

Example

A is Morita equivalent to $M_n(A)$.

Proof: Categorical

- Define $F : A$-mod $\to M_n(A)$-mod by $N \mapsto N^n$ with the standard matrix action on a vector.
- Define $G : M_n(A)$-mod $\to A$-mod by $M \mapsto E_{1,1}M$.
- $\eta : \text{Id}_{A}$-mod $= GF$ is given by $\eta_M(m) = E_{1,1}(m, m, \ldots, m)^T$
Examples of Morita Equivalences

Example

A is Morita equivalent to $M_n(A)$.

Proof: Categorical

- Define $F : A\text{-mod} \rightarrow M_n(A)\text{-mod}$ by $N \mapsto N^n$ with the standard matrix action on a vector.
- Define $G : M_n(A)\text{-mod} \rightarrow A\text{-mod}$ by $M \mapsto E_{1,1}M$.
- $\eta : \text{Id}_{A\text{-mod}} = GF$ is given by $\eta_M(m) = E_{1,1}(m, m, \ldots, m)^T$
- $\mu : \text{Id}_{M_n(A)\text{-mod}} \rightarrow FG$ is given by $\eta_N(s) = (E_{1,1}s, E_{2,2}s, \ldots, E_{n,n}s)^T$
Morita Context

Some times a hammer is to rigid and one need a softer tool (A rubber mallet if you will). For a Morita equivalence the equivalent of a rubber mallet is a Morita context.
Morita Context

Some times a hammer is to rigid and one need a softer tool (A rubber mallet if you will). For a Morita equivalence the equivalent of a rubber mallet is a Morita context.

Definition: Morita context

A *Morita context* between A and B if there is an sextuplet $(A, B, _AP_B, _BQ_A, f : _AP_B \otimes_B _BQ_A \to A, g : _BQ_A \otimes_A _AP_B \to B)$ Satisfying all the condition of a Morita equivalence expect f and g are no longer required to be isomorphisms.
Morita context first example

Morita context example

Take $V \in A\text{-}mod$ then there is a Morita context between A and $B := \text{Hom}_A(V, V)$.
Morita context first example

Morita context example

Take $V \in A\text{-mod}$ then there is a Morita context between A and $B := \text{Hom}_A(V, V)$

Sketch of Proof

- V is a $(A - B)$ bimodule where $v \cdot h = h(v)$
Morita context first example

Morita context example

Take $V \in A\text{-mod}$ then there is a Morita context between A and $B := \text{Hom}_A(V, V)$

Sketch of Proof

• V is a $(A - B)$ bimodule where $v \cdot h = h(v)$
• $V^\wedge := \text{Hom}_A(V, A)$ this has bimodule structure given by $< h \mapsto \phi \leftarrow a, v > = < \phi, h(a \cdot v) >$.

Adam Jacoby 10/16/15 Graduate student seminar
Morita context first example

Take $V \in A\text{-mod}$ then there is a Morita context between A and $B := \text{Hom}_A(V, V)$

Sketch of Proof

- V is a $(A - B)$ bimodule where $v \cdot h = h(v)$
- $V^\wedge := \text{Hom}_A(V, A)$ this has bimodule structure given by $< h \mapsto \phi \leftarrow a, v > = < \phi, h(a \cdot v) >$.
- $f : V \otimes_B V^* \to A$ is given by $g(v \otimes_B \phi) = \phi(v)$
Take $V \in A\text{-mod}$ then there is a Morita context between A and $B := \text{Hom}_A(V, V)$

Sketch of Proof

- V is a $(A - B)$ bimodule where $v \cdot h = h(v)$
- $V^\wedge := \text{Hom}_A(V, A)$ this has bimodule structure given by $< h \mapsto \phi \mapsto a, v > = < \phi, h(a.v) >$.
- $f : V \otimes_B V^* \to A$ is given by $g(v \otimes_B \phi) = \phi(v)$
- $g : V^* \otimes V \to B$ is given by $\phi \otimes_A V = w \mapsto \phi(w).v$
Morita context second example

Idempotents

Take e and idempotent in A (i.e. $ee = e$) then eAe is a ring and there is a Morita context between A and eAe. If we also have $AeA = A$ then this is a Morita equivalence.
Morita context second example

Idempotents

Take e and idempotent in A (i.e. $ee = e$) then eAe is a ring and there is a Morita context between A and eAe. If we also have $AeA = A$ then this is a Morita equivalence.

Sketch of Proof

- $AP_{eAe} = Ae$ and $eAe Q_A = eA$ with actions given by multiplication.
Idempotents

Take e and idempotent in A (i.e. $ee = e$) then eAe is a ring and there is a Morita context between A and eAe. If we also have $AeA = A$ then this is a Morita equivalence.

Sketch of Proof

- $A_{P_{eAe}} = Ae$ and $eAe_{Q_A} = eA$ with actions given by multiplication.
- Define $f : Ae \otimes_{eAe} eA \rightarrow A$ by $aA \otimes_A be \mapsto aeb$ (Surjectivity of this map requires $AeA = A$)
Idempotents

Take e and idempotent in A (i.e. $ee = e$) then eAe is a ring and there is a Morita context between A and eAe. If we also have $AeA = A$ then this is a Morita equivalence.

Sketch of Proof

- $_{A}P_{eAe} = Ae$ and $_{eAe}Q_{A} = eA$ with actions given by multiplication.
- Define $f : Ae \otimes_{eAe} eA \to A$ by $ae \otimes_{A} be \mapsto aeb$ (Surjectivity of this map requires $AeA = A$)
- Define $g : eA \otimes_{A} Ae$ be $ea \otimes_{A} be \mapsto eabe$
- The associativity condition holds since multiplication is associative.
Outline

1. Definitions
2. Examples
3. Properties and Uses
4. Why do I care?
A hammer has many applications some are listed below

- Securing nails in wood
- Removing nails for wood
- Decomposing large objects into multiple smaller objects via the application of blunt force
- Self defense
- Using as a metaphor for a complex mathematical tool
What does a Morita equivalence preserve?

Properties preserved
- Simple
- Semisimple
- Left (right) Noetherian
- Left (right) Artinian
- Prime
- Semiprime
- Primitive
- Semiprimitive

Definition
A is simple if A has no two sided ideals.
What does a Morita equivalence preserve?

<table>
<thead>
<tr>
<th>Properties preserved</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>A is semisimple if every A-module is projective.</td>
</tr>
<tr>
<td>Semisimple</td>
<td></td>
</tr>
<tr>
<td>left (right) Noetherian</td>
<td></td>
</tr>
<tr>
<td>left (right) Artinian</td>
<td></td>
</tr>
<tr>
<td>Prime</td>
<td></td>
</tr>
<tr>
<td>Semiprime</td>
<td></td>
</tr>
<tr>
<td>Primitive</td>
<td></td>
</tr>
<tr>
<td>Semiprimitive</td>
<td></td>
</tr>
</tbody>
</table>
What does a Morita equivalence preserve?

Properties preserved
- Simple
- Semisimple
- left (right) Noetherian
- left (right) Artinian
- Prime
- Semiprime
- Primitive
- Semiprimitive

Definition
A is left (right) Noetherian if every ascending chain of left (right) ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ stabilizes after finitely many steps.
What does a Morita equivalence preserve?

Properties preserved

- Simple
- Semisimple
- Left (right) Noetherian
- Left (right) Artinian
- Prime
- Semiprime
- Primitive
- Semiprimitive

Definition

A is left (right) Artinian if every descending chain of left (right) ideals $I_1 \supseteq I_2 \supseteq I_3 \supseteq ...$ stabilizes after finitely many steps.
What does a Morita equivalence preserve?

Properties preserved
- Simple
- Semisimple
- left (right) Noetherian
- left (right) Artinian
- Prime
- Semiprime
- Primitive
- Semiprimitive

Definition

A is prime if the zero idea is prime i.e. for I, J ideals in A $IJ = 0 \implies I = 0$ or $J = 0$
What does a Morita equivalence preserve?

Properties preserved
- Simple
- Semisimple
- Left (right) Noetherian
- Left (right) Artinian
- Prime
- Semiprime
- Primitive
- Semiprimitive

Definition

A is semiprime if the zero ideal is semiprime i.e.
\[J^k = 0 \Rightarrow J = 0. \]
What does a Morita equivalence preserve?

Properties preserved
- Simple
- Semisimple
- left (right) Noetherian
- left (right) Artinian
- Prime
- Semiprime
- Primitive
- Semiprimitive

Definition
A is called primitive if the zero ideal is annihilator of a left module i.e. \(A \) has a faithful left module.

Adam Jacoby 10/16/15 Graduate student seminar
What does a Morita equivalence preserve?

Properties preserved
- Simple
- Semisimple
- Left (right) Noetherian
- Left (right) Artinian
- Prime
- Semiprime
- Primitive
- Semiprimitive

Definition

A is semiprimitive if the Jacobson radical is 0. Recall the Jacobson radical of A is the two sided idea that annihilates all simple left (equivalently right) modules.
What does a Morita equivalence preserve?

Properties not preserved
- Commutative
- Reduced
- Goldie
- Frobenius

Definition
I hope you know this one on your own.
Properties not preserved

- Commutative
- Reduced
- Goldie
- Frobenius

Definition

A is reduced if it has no zero divisors.
What does a Morita equivalence preserve?

Properties not preserved
- Commutative
- Reduced
- Goldie
- Frobenius

Definition
A is Goldie if it has finite uniform dimension and satisfies the ACC on left (right) annihilator subsets.
What does a Morita equivalence preserve?

Properties not preserved
- Commutative
- Reduced
- Goldie
- Frobenius

Definition
A is Frobenius if $A \cong A^*$ as left (equivalently right) A modules. Here $\langle a \leftarrow f, b \rangle = \langle f, ba \rangle$.

Adam Jacoby 10/16/15 Graduate student seminar
Outline

1 Definitions

2 Examples

3 Properties and Uses

4 Why do I care?
Hammers have benefited my life in many ways some are listed below.

- Construction of shelter
- Stress relief
- Adhering items to walls for aesthetic purposes
- Paper weight
Why do I care about hammers?

Hammers have benefited my life in many ways some are listed below.

- Construction of shelter
- Stress relief
- Adhering items to walls for aesthetic purposes
- Paper weight

As useful as hammers may be they are of little use in acquiring a PhD in math (In fact the recent construction has shown them to be quite the opposite) fortunately Morita contexts are a better tool in this regard.
Background

Take G a finite subset of $\text{Aut}(A)$. Then $\mathbb{K}G$ acts on A in the natural way.
Background

Take G a finite subset of $\text{Aut}(A)$. Then $\mathbb{K}G$ acts on A in the natural way.

Definition: Invariants

The G invariants of A will be denoted $A^{\mathbb{K}G} := \{a \in A | g(a) = a \forall g \in G\}$
Take G a finite subset of Aut(A). Then $\mathbb{K}G$ acts on A in the natural way.

Definition: Invariants

The G invariants of A will be denoted $A^G := \{ a \in A | g(a) = a \forall g \in G \}$

Definition: $A\#\mathbb{K}G$

$A\#\mathbb{K}G$ is a ring which as a group is $A \otimes \mathbb{K}G$ with multiplication defined by $(a \# g)(b \# h) = ag \cdot b \# gh$.
A more Hopfy example

Despite my best efforts I was unable to define a Hopf algebra structure on the set of all hammer so the parallels must sadly end here.
A more Hopf algebra example

Group example

There is a Morita context between A^KG and $A#^KG$ (In fact we can replace KG with any finite dimensional Hopf algebra and this statement remains true.)

Structure of the context

- Denote $e = \frac{1}{|G|}\sum_{g \in G} g$ it is easy to check that $e \in KG$ is an idempotent and $1#e \in A#H$ is an idempotent.
A more Hopfy example

Group example

There is a Morita context between A^KG and $A^#K$ (In fact we can replace KG with any finite dimensional Hopf algebra and this statement remains true.)

Structure of the context

- Denote $e = \frac{1}{|G|} \sum_{g \in G} g$ it is easy to check that $e \in KG$ is an idempotent and $1#e \in A#H$ is an idempotent.
- $A^KG \cong e.A$
There is a Morita context between $A^\mathbb{K}G$ and $A\#\mathbb{K}G$ (In fact we can replace $\mathbb{K}G$ with any finite dimensional Hopf algebra and this statement remains true.)

Structure of the context

- Denote $e = \frac{1}{|G|} \sum_{g \in G} g$ it is easy to check that $e \in \mathbb{K}G$ is an idempotent and $1\#e \in A\#H$ is an idempotent.
- $A^\mathbb{K}G \cong e.A$
- $(1\#e)(A\#H)(1\#e) = (e.A\#e\mathbb{K}Ge) = A^H \#e \cong A^H$
A more Hopfy example

Group example

There is a Morita context between $A^\mathbb{K}G$ and $A^\#\mathbb{K}G$ (In fact we can replace $\mathbb{K}G$ with any finite dimensional Hopf algebra and this statement remains true.)

Structure of the context

- Denote $e = \frac{1}{|G|} \sum_{g \in G} g$ it is easy to check that $e \in \mathbb{K}G$ is an idempotent and $1^\#e \in A^\#H$ is an idempotent.
- $A^\mathbb{K}G \cong e.A$
- $(1^\#e)(A^\#H)(1^\#e) = (e.A^\#e\mathbb{K}Ge) = A^H \#e \cong A^H$
- Thus the Morita context holds and is an equivalence if $(A^\#\mathbb{K}G)(1^\#e)(A^\#\mathbb{K}G) = A^\#\mathbb{K}G$
Definition: H-Spec

For I an ideal in A we say I is an *H-prime ideal* or $I \in \text{H-Spec}(A)$ if I is stable under the action of KG and for J_1, J_2 KG stable ideals then $J_1 J_2 \subseteq I \Rightarrow J_1 \subseteq I$ or $J_2 \subseteq I$.
Definition: H-Spec

For \(I \) an ideal in \(A \) we say \(I \) is an \emph{H-prime ideal} or \(I \in H\text{-Spec}(A) \) if \(I \) is stable under the action of \(KG \) and for \(J_1 \) \(J_2 \) \(KG \) stable ideals then \(J_1 J_2 \subseteq I \Rightarrow J_1 \subseteq I \) or \(J_2 \subseteq I \).

Theorem [3]

For \(P \in \text{Spec}(A) \), \(I \in H\text{-Spec}(KG) \) and \(N \) the intersection of all prime ideals minimal over \(I \) the following facts are known.

1. \(P \) minimal over \(I \) \(\iff (P : H) = I \)
2. The number of primes minimal over \(I \) is bounded by \(|G|\)
3. \(N^{\dim_K(H)} \subseteq I \)
Application

Definition: H-Spec

For I an ideal in A we say I is an *H-prime ideal* or $I \in \text{H-Spec}(A)$ if I is stable under the action of $\mathbb{K}G$ and for J_1, $J_2 \mathbb{K}G$ stable ideals then $J_1 J_2 \subseteq I \Rightarrow J_1 \subseteq I$ or $J_2 \subseteq I$.

Theorem [3]

For $P \in \text{Spec}(A)$, $I \in \text{H-Spec}(\mathbb{K}G)$ and N the intersection of all prime ideals minimal over I the following facts are known.

1. P minimal over $I \iff (P : H) = I$
2. The number of primes minimal over I is bounded by $|G|$
3. $N^{\text{dim}_{\mathbb{K}(H)}} \subseteq I$

This remains and other similar questions remain open when $\mathbb{K}G$ is replaced with a semisimple Hopf algebra.

