\(\Omega' = \{ \omega : \exists n_1, \ldots, n_n \to \infty \, \omega \in A_n(\omega) \} \)

\(p(D) = 1 \)

\(\Omega' \) has property

Occupation Times

Def Let \(D = B(0, r) = \{ y : |y| < r \} \) then the occupation time for \(B_t \) is

\[\int_0^\infty 1_D(B_t) \, dt \]

i.e. the total length of the time in \(D \), possibly \(\infty \)

\(\Omega_m \) let \(D = B(0, r) \) then

2.1) \(P_x \left(\int_0^\infty 1_D(B_t) \, dt = \infty \right) = 1 \) in \(d \leq 2 \)

2.2) \(E_{D_k} \left(\int_0^\infty 1_D(B_t) \, dt = \infty \right) < \infty \) in \(d \geq 3 \)

\[T_0 := 0 \]
\[S_k := \inf \{ t > T_{k-1} : B_t \in D \} \]
\[T_k := \inf \{ t > S_k : B_t \notin G \} \]

Strong Markov property remark.

By strong Markov property for \(k \geq 1 \), let \(T = T_1 \).

\[P_x \left(\int_{S_k}^{T_1} 1_D(B_t) \, dt \geq \gamma \mid \mathcal{F}_{S_k} \right) = P_x \left(\int_0^{T_1} 1_D(B_t) \, dt \geq \gamma \right) = H(\gamma) \]

Recall.

If \(Z_t \) adapted to \(G_t \) and \(f \) bounded \& measurable,

\[E\left[f(Z_t) \mid G_0 \right] = E\left[f(Z_{t-1}) \right] \]

Then \(Z_t \) has stationary independent increments.

Do Thm 2.8 + proof + summary up to §3.3 today.