Chapter 1

\[P_1 = (P_1)^2 = (-P_2)^2 = P_2^2 = P_2 \]
\[P_1 + P_2 = 2P_2 = 0 \]

HW help eps
\[\| (1 + \text{eps}) - 1 \| \]

Notice
\[\frac{|x - \bar{x}|}{|x|} < C E_{\text{mach}} = O(E_{\text{mach}}) \]

Test will cover up to CH 17

Asymptotics
\[f(x) = O(|x - x_0|^2) \]
means \[\exists C \text{ s.t.} \]
\[|f(x)| < C |x - x_0|^k \quad \text{as} \quad x \to x_0 \]

\[\psi(t, s) = O(t^h) \]
\[|\psi(t, s)| \leq c t^h \]
\[|x - \tilde{x}| \leq O(\varepsilon_{\text{mach}}, |x|) \]

Stability - Backward, Forward, and Accuracy

A problem \(f : X \rightarrow Y \)

the problem has conditioning concerns

An algorithm for the problem

\(\tilde{f} : X \rightarrow Y \)

Is \(\tilde{f} \) accurate? (i.e. \(\tilde{f} \) is close to \(f \))

Is \(\tilde{f} \) forward stable?

Is \(\tilde{f} \) backward stable?

We say that \(\tilde{f} \) is **backward accurate** if \(\frac{\|f - \tilde{f}\|}{\|f\|} = O(\varepsilon_{\text{mach}}) \)

An algorithm \(\tilde{f} \) is stable if \(\frac{\|\tilde{f}(x) - \tilde{f}(x')\|}{\|f(x)\|} = O(\varepsilon_{\text{mach}}) \)

\(\forall x \frac{\|x - \tilde{x}\|}{\|x\|} = O(\varepsilon_{\text{mach}}) \)

So \(\tilde{f}(x) \) is close to \(f(\tilde{x}) \) for \(x \) close to \(\tilde{x} \)

Backward stability strengthens this to equality

\(\tilde{f}(x) = f(\tilde{x}) \) for some \(\tilde{x} \in B_p(x) \) where \(\frac{\|x - \tilde{x}\|}{\|x\|} = O(\varepsilon_{\text{mach}}) \)

so the algorithm gives the exact solution of a nearby problem
Notice

Backward stable is for some \tilde{x}
Stable is for all \tilde{x}

Thm Backward stable $\&$ well conditioned \implies accurate

Let \tilde{f} be an algorithm for $f: X \rightarrow Y$
when \tilde{f} is backward stable and f is well-conditioned $K(x)$

Then

$$\frac{\| \tilde{f}(x) - f(x) \|}{\| f(x) \|} = O(K(x) \cdot \epsilon_{\text{mach}})$$

Proof

Backward stable, so $\exists \tilde{x}$

$\tilde{f}(x) = f(\tilde{x})$

$\frac{\| x - \tilde{x} \|}{\| x \|} = O(\epsilon_{\text{mach}})$

$f(x)$ has condition number $K(x)$

$$\limsup_{\delta \rightarrow 0} \frac{\| f(x) - f(x + \delta x) \|}{\| f(x) \|} \frac{\| \delta x \|}{\| x \|} = K(x)$$

i.e.

$$\frac{\| f(x) - f(\tilde{x} + \delta) \|}{\| f(x) \|} \leq K(x) \frac{\| \delta \|}{\| x - \tilde{x} \|} \frac{\| x - \tilde{x} \|}{\| x \|} + \epsilon$$
So substituting \(f(x) = f(x) \)

\[
\lim_{\|x\|} \frac{\|f(x) - f(x)\|}{\|f(x)\|} \leq K(x) \lim_{\|x\|} \frac{\|x - x\|}{\|x\|} = K(x) \mathcal{O}(\varepsilon_{\text{mach}})
\]

Consider

\(x_1, x_2 \). Then

\[
f(x_1) = x_1(1 + \varepsilon_1)
f(x_2) = x_2(1 + \varepsilon_2)
\]

\[
f(x_1) \pm f(x_2) = x_1(1 + \varepsilon_1) \pm x_2(1 + \varepsilon_2)
\]

So

\[
\frac{f(x_1) - f(x_2)}{f(x_1) - f(x_2)} = \left(\frac{x_1(1 + \varepsilon_1) - x_2(1 + \varepsilon_2)}{x_1(1 + \varepsilon_1) - x_2(1 + \varepsilon_2)} \right) (1 + \varepsilon_3)
\]

\[
= \left(\frac{x_1 - x_2 + x_1 \varepsilon_1 - x_2 \varepsilon_2}{x_1 - x_2} \right) (1 + \varepsilon_3)
\]

\[
= \frac{x_1 - x_2 + x_1 \varepsilon_1 - x_2 \varepsilon_2 + (x_1 - x_2) \varepsilon_3 + x_1 \varepsilon_3 \varepsilon_3 - x_2 \varepsilon_1 \varepsilon_3}{x_1 - x_2}
\]

\[
= x_1(1 + \varepsilon_4) - x_2(1 + \varepsilon_5)
\]

The claim is that all of the basic operations are backward stable.

\(+, -, /, \cdot, \text{inner product} \)

As an example of a nonbackward stable operation -- out product

\[
XY^\ast
\]

The algorithm is stable however
Unstable

A square matrix

compute eigenvalues via finding the roots of the characteristic polynomial

$$\text{det} \left| A - zI \right|$$

Read into §16.