Actuarial Present Value

State space \(S := \{0, 1, \ldots \} \) (countable, finite or not)

At time \(n \), the individual is in state \(n \).

When the individual is in state \(j \), receive payment \(P_j \) (think of this as a premium).

Also, another kind of payment \(B \) (benefit) \(B_j \) is paid whenever a transition from state \(i \) to \(j \) is made.

Start in state \(j \) at time \(n \). At time \(n+1 \) make payment of \(\$100 \) if still in state \(j \).

Take time discount rate \(i = 100\% \) / time.

So at time \(n+1 \), the present value is \(\frac{100}{1+i} \).

Define \(V := \frac{1}{1+i} \) the discount factor.

In general, the value of a payment \(x \) at time \(n+1 \) at time \(n \) is \(x \cdot V^n \) [APV]

In a Markov chain example:

Homogeneous \(Q := \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix} \) start in state 0, whenever

in state 1 pay \(P \). Calculate out for times \(n, n+1, n+2, n+3 \).

Discount factor is \(V := \frac{1}{1+i} \).
\[\text{APV} \left(C^{(j)} \right) = \sum_{k=0}^{\infty} \left(k Q_n^{(j)} C^{(j)} v^k \right) \]

- \(C^{(j)} \): Future cash flows in state \(j \)
- \(k Q_n^{(j)} \): Probability of being in state \(j \) at time \(k \)

So for example above

\[0 + PV \left(\frac{1}{3} \right) + PV^2 \left(\frac{1}{3} + \frac{2}{3} \cdot \frac{3}{4} \right) + PV^3 \left(\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{3}{4} + \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{3}{4} \right) + \ldots \]

- \(Q_n^{(i,j)} \): Probability of transitioning from state \(i \) to state \(j \)
- \(P_n^{(i, \text{stay})} \): Probability of staying in state \(i \)

E.g. payment \(p \) for as long as remains in state \(i \), then terminating

\[\text{APV} = P \left[1 + PV \left(\frac{3}{4} \right) + PV^2 \left(\frac{3}{4} \right)^2 + \ldots + \left(PV \left(\frac{3}{4} \right) \right)^n + \ldots \right] = \frac{1}{1 - PV \left(\frac{3}{4} \right)} \]

Read Examples 5, 6
Example

Four states \{F, G, H, J\} \quad \pi = 0.9

\{0, 1, 2, 3\}

\[S = 0 = F \]

This item \(x \) in state 0, get paid at the end of 3 years

if \(x \) is in state 0, amount \(\$500 \)

\[Q = \begin{pmatrix}
0.2 & 0.8 \\
0.5 & 0.5 \\
0.75 & 0.25 \\
1 & 0
\end{pmatrix} \]

Timeline

\[0 \quad 1 \quad 2 \quad 3 \]

\[0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \]

\[1 \rightarrow 1 \rightarrow -1 \rightarrow 3 \]

\[0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \]

\[0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \]

\[0 \rightarrow 0 \rightarrow 1 \rightarrow 0 \]

\[0 \rightarrow 1 \rightarrow 2 \rightarrow 0 \]