Graphs
22 February 2011

Circuits \(\subseteq\) Bases
for circuits, define
\[B = \{ B \in E : B \text{ maximal set w/o circuits} \} \]

Check (3)
\[B_1, B_2 \in B \quad (as \text{ def.1}) \]

Look at \(B_1 + e_2 \quad e_2 = B_2 - B_1 \), suppose
\(B_1 + e_1 \) has > 1 circuit
\[e_1 \in C_1 \cap C_2 \]
\[\Rightarrow (3) (C_1 \cup C_2) \setminus e \supseteq C_3 \in C \]
\[C_3 \subseteq B \quad \text{contradicts} \quad B_1 \in B \]

Challenge rank function thing.

Planar Graphs

Def A graph \(G \) is PLANAR if "we can draw it in the plane," that is, if we can
- Assign a point \(p_i \) to each vertex \(i \) (distinct)
- Assign a continuous curve \(C_{ij} \) to each edge \(\{i,j\} \),
 \(s.t. \ C_{ij}(0) = p_i \quad C_{ij}(1) = p_j \quad \) and
 distinct \(C_{ij} \) \(C_{kl} \) do not intersect other than endpoints
- \(C_{ij} \) does not intersect \(p_k \) for \(k \neq i,j \)

Def Such a construction is a \textit{drawing} of a planar graph.
Ex Trees, cycles are planar
 hint - grow trees with an expanding circle

Def Given a drawing of planar graph G, the
 faces of G are the connected sets (faces) of the
 complement of the drawing in the plane
 combinatorially, we identify
 faces with vertex induced
 simple cycles

Notice - faces are induced cycles

× Jordan curve theorem — C continuous closed
 simple curve (simple - embedding of circle into plane - no
 self-intersections, $S \rightarrow \mathbb{R}$ continuous)

Then $\mathbb{R}^2 \setminus C$ has two connected components
 "inside" and
 "outside"

Note, we count the "outer face"

spherical projection,
the face which contains north
pole is outer face
For graphs, \(2m = \sum_{v \in V} \text{deg}(v) \)

how many faces is each edge in? \(\& \)-edges of

if \(G \) is 2-connected, by Jordan curve theorem

\[2m = \sum_{f \in \text{faces}} |f| \]
where |f| = # vertices in \(f \)

If \(G \) is planar but not 2-connected, it is connected a bunch of planar graphs connected by cut vertices

\[\triangle \triangle \rightarrow \triangle \triangle \triangle \]

octahedron

Def A planar dual of \(G \), \(G^\ast \)

\[V(G^\ast) = F(G) \]

\[F(G^\ast) = V(F) \]

\[E(G^\ast) = E(G) \]
Observation — the 2nd counting relation is dual to the first observation — In matroidal terms

The co-circuits of the tree matroid are cuts.

For planar graphs, the cuts are cycles in the planar dual.

So if \(G \) is planar, the dual tree matroid \(\cong \) tree matroid of the dual.

Proof Preview — this is reversible!

Thm. Let \(G \) be planar with

\[|V| = v, \quad |E| = e, \quad |F| = f. \]

(Euler's formula)

\[v - e + f = 2. \]

Pf. Key claim: Let \(T \) be an acyclic subgraph of \(G \). Then \(T^* \), the dual of \(E \setminus T \), is connected, so \(T^* \cong (E \setminus T)^* \).

Apply claim to spanning tree \(T \) of \(G \). Then

- \(T^* \) connected, \((E) T = T^* \) so \((E) T^* \) is acyclic
- so \(T^* \) is a spanning tree of \(G^* \)

\((v - 1) + (f - 1) = e \) (i.e., edges of \(T, T^* \) cover edges of \(G \))
But the key claim follows from the fact that G planar \Rightarrow dual tree matroid \cong tree matroid of dual G'

because

G' subgraph G' disconnects $(G')^\ast$ \iff it has a cycle

Corollaries (Exercises)

1) Any planar graph has $O(\sqrt{V})$ edges

2) K_5 not planar

3) $K_{3,3}$ is not planar

4) if planar, faces are all triangles

4) Average degree of planar graph < 6