Last time: characterize trees by matchings

Recall \(\mathcal{T} \) is a tree \(\iff \mathcal{T} \) has \(n - 1 \) edges.

For subgraphs \(\mathcal{G} \) with \(m' \) edges and \(n' \) vertices, we have \(m' \leq n' - 1 \).

Proof sketch: any subgraph \(\mathcal{G} \) with avg degree \(2 \) has a cycle.

Recall \((2) \) from last time.

Used following trick:
\(\mathcal{G} = (V, E) \) defined \(B_{\mathcal{G}}(\mathcal{G}) = (V^k, E, F) \).

\[\text{(k copies of } V \text{)} \]

Showed using Hall's Theorem.

For all subgraphs of \(\mathcal{G} \), \(m' \leq kn' \).

\(\iff \)

\(B_{\mathcal{G}}(\mathcal{G}) \) has a complete matching.

Proof Hall's.
Ex

See if we can reduce # of modules needed to check

Associate with thick - thin problem with thin - thick versions of orientations

Ex

Reinterpolate all thin - thin versions of orientations if thin

Ex
This time: Graphs that satisfy some hereditary condition.

Idea: Generalize some properties of trees

Def Let \(G \) be a graph. \(|V| = n, |E| = m\)

\(G \) is \((k,l)\)-sparse if all subgraphs \(G' \) we have

\[m' \leq kn' - l \]

\(G \) is "tight" or a \((k,l)\)-graph if in addition

\[m = kn - l \quad \text{i.e. at top level} \]

Eg. Trees are "\((1,1)\)-graphs"

Forrests are \((1,1)\)-sparse

Eg. \((1,0)\) graphs have exactly one cycle per connected component

Eg.

A \((k,l)\) graph has average degree

\[\frac{2m}{n} = \frac{2(kn - l)}{n} \leq pk \]

Turan's thm: independent set

3 independent set of size \[\frac{n}{dk} \]

Conclusion: if \(k \) doesn't depend on \(n \), no \((k,l)\) graph can have \[m' = kn' - l \] for all subgraphs.
Ex

All bicycles are subdivisions of either:

- subdivision

these are all, and all of, the minimal not (1,1) sparse graphs.

Eg. If cycles minimal bad for (1,1) graphs

- G minimal not (1,1) - sparse graph
- G connected, or else discarded one of components is (1,1)-free
- If G has a leaf, m \geq n, remove leaf m=1 \geq n-1
- so G remove leaves is still not (1,1) sparse
- If there is more than one cycle, exists an edge we can remove to maintain the existence of a cycle
If in this case \(m > n \), because if exactly one cycle, \(m = n \). But now if we remove any edge, \(m - 1 > n \), so a cycle remains.

If 2 cycles share a path, there exists a third cycle by pasting together the outside.

Interesting fact:

Cycles are specific examples of \((1,0)\) graphs.

Notice further: if we add an edge to a tree, we get a connected \((1,0)\) graph.

Question: for what \(k, l > 0 \) do we have a nonempty class of \((k,l)\) graphs?

Fix \(k, l \in \mathbb{N} \)

Try \((1,2)\) graphs

None exist, because \(m' = 1 \) for one edge \(n' = 2 \).

=> Any \((1,2)\) sparse has no edges at all.

Thm (Existence of \((k,l)\) graphs)

Let \(k, l \) be natural \(\in \mathbb{N} \). Then an \((k,l)\) graph if

\(\star \) \(l < 2k \)

or \(n \) large enough that \(\binom{n}{2} \geq kn - l \).
If and \(n_0 \) be maximum s.t. \(K_{n_0} \) is \((k, l)\)-sparse.

Add one vertex

\[
K_{n_0}
\]

add edges to \(H \) until \(m = kn - l \)

(works since \(K_{n_0} \) not sparse)

This will be a \((k, l)\)-graph on \(n_0 + 1 \) vertices to check. If \(G \) subgraph \(G \)

\[
G \subseteq K_{n_0}
\]

were done

if not then \(\forall (u, v) \in E \) same \(n_0 + 1 \) vertices, four edges.

To finish, for larger \(n \). If

\[
G_n
\]

is a \((k, l)\)-graph on \(n \) vertices

then we can make \(G_{n+1} \) obtained by

\[
G_{n+1}
\]

same argument says \(G_{n+1} \) is a \((k, l)\)-graph.

Thm (Devin, Reiner) This is everything interesting,

i.e. non-integer combination don't make \((k, l)\)
Def Let G be (k, l) sparse.
A subgraph G' is a **block** if it is itself a smaller (k, l) graph.

Def A subgraph G' is a **component** if it is a maximal block.

n.b. $(1, 1)$ components of a $(1, 1)$ sparse graph are the connected components.

Thm (Structure Theorem)

Let G be (k, l) sparse and let G', G'' be blocks in G.
- G', G'' are vertex induced.
- $G' \cap G''$ (vertex induced intersection) is a block.
 - If $l = 0$, $G' \cup G''$ is a block.

In general, $G' \cup G''$.
- If $l \leq k$ and $G' \cap G'' \neq \emptyset$ then $G' \cup G''$ is also a block.
- If $l > k$ and $|G' \cap G''| > 1$ then $G' \cup G''$ is also a block.