Today Quantum Statistical Mechanics

and a comparison to classical probability theory

<table>
<thead>
<tr>
<th>Classical</th>
<th>Quantum statistical</th>
</tr>
</thead>
<tbody>
<tr>
<td>prob. mass function p_m</td>
<td>Hilbert space \mathcal{H}, N-dim</td>
</tr>
<tr>
<td>$m = 1, 2, \ldots$</td>
<td>density operator $\rho : \mathcal{H} \to \mathcal{H}$</td>
</tr>
<tr>
<td>$\rho > 0$ $\text{tr} \rho = 1$</td>
<td>$\rho > 0$ for ρ must be self-adjoint</td>
</tr>
</tbody>
</table>

Def the $\rho > 0$ means $\langle \psi | \rho | \psi \rangle > 0 \forall \psi \in \mathcal{H}$

But if $\rho > 0$ then ρ must be self-adjoint — since always gives real inner products, real eigenvalues, is diagonalizable with ON eigenvectors

It follows from this that if ρ is a density operator, then $\lambda_i > 0$ and $\sum \lambda_i = 1$

observable $f : \{1, \ldots, N\} \to \mathbb{R}$

$\mathbb{E}_\rho(f) = \sum_i f(i) p_i$

expected value of f

$\int f \rho = \cdots$ (Equation)

an observable is a self-adjoint operator $A : \mathcal{H} \to \mathcal{H}$

the expected value of A wrt ρ is $\mathbb{E}_\rho(A) = \text{tr}(A \rho)$

E.g. $A_\rho = \rho A$ can be diagonalized using $\text{tr}(A \rho) = \text{tr}(\rho A)$ the same basis

$A = \begin{pmatrix} \alpha_1 & \cdots & \alpha_n \end{pmatrix}$ $\rho = \begin{pmatrix} \lambda_1 & \cdots & \lambda_n \end{pmatrix}$

and then $\text{tr}(A \rho) = \text{tr}(\rho A) = \sum_i \alpha_i \lambda_i$ which is like the probability expected value in classical probability theory.

This is sort of a non-commutative probability theory.
Quantum mechanics

\[\phi \]

\(\phi \) unit vector is called a state.

A density operator is called a state.

In general, \(\rho = (\lambda_1, \ldots, \lambda_n) \).

Eigenvalues \(\lambda_1, \ldots, \lambda_n \).

\[\rho \rightarrow \Pi \rho \] is a density operator.

"a pure state"

\[E_\phi(A) := \langle \phi | A | \rho \rangle \]

\[\text{tr} (A \Pi \rho) = \langle \phi | A | \rho \rangle \]

\[\# \text{tr}(A | \rho \rangle \langle \rho |) = \text{tr}(\langle \phi | A | \phi \rangle) \]

= \langle \phi | A | \phi \rangle

Formulas for Traces

\[\text{Def} \quad \text{tr} (A) = \sum_{i=1}^{N} \alpha_{ii} = \sum_{i=1}^{N} \langle \psi_i | A | \psi_i \rangle \]

1. \(\text{tr} (AB) = \text{tr} (BA) \neq \text{tr} A \times \text{tr} B \)

2. \(\text{tr} (A + B) = \text{tr} A + \text{tr} B \)

3. \(\text{tr} (A \otimes B) = \text{tr} A \times \text{tr} B \)

4. \(\text{tr} (A) \) invariant under orthonormal basis change

\[\begin{align*}
\text{Eq. 1.} \quad \text{tr} (AB) & = \sum_{i=1}^{N} \langle \psi_i | AB | \psi_i \rangle \\
& = \sum_{i=1}^{N} \langle \psi_i | A | \psi_j \rangle \langle \psi_j | B | \psi_i \rangle \\
& = \sum_{i=1}^{N} \sum_{j=1}^{N} \langle \psi_i | A | \psi_j \rangle \langle \psi_j | B | \psi_i \rangle \\
& = \sum_{j=1}^{N} \sum_{i=1}^{N} \langle \psi_j | B | \psi_i \rangle \langle \psi_i | A | \psi_j \rangle = \text{tr} (BA)
\end{align*} \]
4. \(tr(U^*AU) = tr(UU^*A) = tr(A) \)

Eqn: \(tr(1\psi\psi^\dagger) = tr(\Phi(\Phi^\dagger)) \)

\(= tr(\langle\psi|\psi\rangle) = 1 \)

so trace of a pure state is 1

A density operator \(\rho \) is a pure state iff \(\rho^2 = \rho \)

\(\rho = |\psi\rangle\langle\psi| \) where \(\rho\phi = \phi \)

5. In general, any state is a convex combination of pure states.

\(\rho = (\lambda_1, \ldots, \lambda_n) \) with eigenstates \(\psi_1, \ldots, \psi_n \)

\[\rho = \sum_i \lambda_i |\psi_i\rangle\langle\psi_i| \]

// spectral theorem

\(\sum \lambda_i = 1 \), \(\lambda_i \geq 0 \) i.e. a convex combination

\[E_\rho(A) = tr(\rho A) = \sum_i \lambda_i tr(A|\psi_i\rangle\langle\psi_i|) = \sum_i \langle\psi_i|A|\psi_i\rangle \lambda_i \]

In quantum mechanics, we only have \(\langle \psi | A | \psi \rangle \), but here we have many pure states.

Markov chain \((X_n)_{n=0}^{\infty} \), \(\mu_0 \) initial distribution.

\[\mu_t = E_{\mu_0}(X_t) = \sum_i \mu_0(i) P(i,j) \]

\[\mu_0 \]

\[\mu_t \]

\[\mu_0 \]

\[\mu_0 \]

\[\mu_t \]

Quantum Statistical Dynamics \(\rho_0 \rightarrow \rho_t \)
Two kinds of dynamics — coherent and decoherent

Decoherent first

Let \(\mathcal{M}_n \) be a measurement, i.e., \(\sum\limits_{n=1}^{N} M_n^* M_n = I \)

\(M_n^* M_n \) is self-adjoint and hermitian observable

\((AB)^* = B^* A^* \)

\(M_n^* M_n \) is called the event that \(n \) occurs

\(\rho \) is a density operator

\[E_n (M_n^* M_n) = \text{tr} (M_n^* M_n \rho) = \text{probability that } n \text{ occurs} \]

\(\text{tr} (M_n^* \rho M_n) \)

If \(n \) occurs, then after the measurement, \(\rho \) becomes \(\rho' \)

\[\rho' = \frac{M_n^* \rho M_n}{\text{tr} (M_n^* \rho M_n)} \]

after the measurement, if we forget the outcome, then

\[\rho' = \sum_{n=1}^{N} M_n^* \rho M_n \]

Natural Dynamics

\(U(t) : \mathcal{H} \to \mathcal{H} \) unitary

\[\psi_t = U(t) \psi_0 \]

\(A \) observable

\[E_{\psi_0} (A) \equiv E_{\psi_0} (A_t) \] for \(A_t \)

\[\langle \psi_t | A | \psi_t \rangle = \langle U(t) \psi_0 | A | U(t) \psi_0 \rangle = \langle \psi_0 | U^* (t) A U(t) | \psi_0 \rangle = \langle \psi_0 | A(t) | \psi_0 \rangle \Rightarrow A(t) = U^* (t) A(0) U(t) \]
Next \[E_{\rho_0}(A_0) = E_{\rho}(A_0) \]
\[
= \text{tr}(A_0 \rho_0) = \text{tr}(A_0 \rho) \]
\[
= \text{tr}(U(t)^* A_0 U(t) \rho_0) = \text{tr}(U(t)^* A_0 U(t) \rho) \]
\[
\implies \rho = U(t)^* \rho_0 U(t) \]

for natural dynamics.

For real applications get both decoherence & natural dynamics

\[
\rho = \sum_{m=1}^{N} U M_m \rho M_m^* U^* \]

\[\rho \in L(H) \rightarrow \rho \] operator

Define \[L \rho = \sum_{m=2}^{N} U M_m \rho M_m^* U^* \]

\[L : L(H) \rightarrow L(H) \text{ or } L \in L(L(H)) \]