Algebra 2011-04-14 p1

[Email our schedules to hosteller.]

\[\mathbb{R}[x,y] \] deformation ring, gen by \(xy \)
deform \(xy - yx = 1 \) instead of \(xy - yx = 0 \)

Thm \(\text{of 460-462} \)
Assume \(R \) a PID, \(M \) is free of rank \(n < \infty \) let \(N \) be a zero submodule of \(M \). Then

1. \(N \) is free of rank \(m \) \(\geq n \)
2. There exists a basis \(y, \ldots, y_n \) for \(M \) s.t.
 \[a_1, a_2, \ldots, a_m \] is a basis for \(N \) where
 \[a_1, \ldots, a_m \] nonzero elements of \(R \) s.t.
 \[a_1 | a_2 | \ldots | a_m \]

Proof for each \(R \) module homomorphism \(M \rightarrow R \)
choose \(a_0 \in R \) s.t. \(\langle N \rangle = (a_0) \) an ideal of \(R \) (see last time)

Set \[\Sigma = \{ (a_0) | \phi \in \text{Hom}_R(M,R) \} \]
Saw last time that \(\Sigma \) is a nonempty and contains an ideal maximal among ideals in \(\Sigma \). So
homomorphism \(\varphi : M \rightarrow R \) s.t. \(\varphi(N) = (a_0) \) is a
maximal member of \(\Sigma \).

Set \(a_1 = a_0 \in R \), choose \(y \in N \) s.t. \(\varphi(y) = a_1 \),
\[a_1 \neq 0 \]
y_i can be taken as part of basis of M
$a_i y_i$ as part of basis of N

top of p 462
By (a) $R a_i y_i \cap (N \cap \ker z) = 0$
and so
$N = Ra_i y_i \oplus \ker z$

Part (b) follows

Since $N \neq 0$, rank $N = m > 1$
Since $N = Ra_i y_i \oplus \ker z$

it follows $\ker z \leq m - 1$

by induction, assume $\ker z$ is free (possibly $\{0\}$)

$Ra_i y_i \cong R$ as left R-module (exercise)

so $Ra_i y_i \oplus \ker z$ since direct sum of free R-modules is free (exercise)

Exercise $M = Ra_i y_i \oplus \ker z$

Where the hell did this come from?

Examples Let M be a free \mathbb{Z} module of rank n.
let N be a submodule, also of rank n.
By this theorem, there is a basis y_1, \ldots, y_n for M and non-negative integers a_1, \ldots, a_n such y_1, \ldots, y_n as basis for M, $a_1 y_1, \ldots, a_n y_n$ is basis for N.

identify M with \mathbb{Z}^n, then $N = X \oplus Y \oplus \ldots \times \mathbb{Z}$, etc.

NB. $M / N \cong (\mathbb{Z} / a_1 \mathbb{Z}) \times \ldots \times (\mathbb{Z} / a_n \mathbb{Z})$
Continue we let \(R \) be a PID, and let \(C \) be a cyclic \(R \)-module. So \(\pi \) is a \(C \in C \) st. \(\pi \) is a left \(R \)-module map

\[
\begin{align*}
R & \longrightarrow R \cdot c = C \\
\pi & \longrightarrow \pi \\
\end{align*}
\]

is surjective into \(C \) i.e. \(R \cdot c = C \). Now

\[
\frac{R}{\ker \pi} \cong C.
\]

Since \(R \) is a PID, we may write \(\ker \pi = (a) \) for some \(a \in R \).

\[
\frac{R}{(a)} \cong C \quad \text{as a left } \ R \text{-module}
\]

Also \(\ker \pi = \text{ann}_R C = \text{ann}_R C \), see last line.

FUNDAMENTAL THEOREM OF MODULES OVER PIDS

Existence Part.

Let \(R \) be a PID and \(M \) a finitely generated \(R \)-module.

Then

1. \(M \cong R \oplus \frac{R}{(a_1)} \oplus \ldots \oplus \frac{R}{(a_m)} \)

 for some integer \(r \geq 0 \) and nonzero \(a_1, \ldots, a_m \in R \) not units st.

 \(a_1 | a_2 | \ldots | a_m \)

2. \(M \) is torsion free \(\iff \) \(M \) is free

3. In the decomposition 1

 \[
 \text{Tor}_1(M) \cong \frac{R}{(a_1)} \oplus \frac{R}{(a_2)} \oplus \ldots \oplus \frac{R}{(a_m)}
 \]

 as \(R \)-modules, and \(\text{ann}_R \text{Tor}_1(M) = (a_m) \).