Algebra 8 February 2011

13.2.15 - you skipped it, # fail

F field
α ∈ extension field \overline{F}

$F(\alpha) = F[\alpha] \iff \alpha$ algebraic over F

Note: Suppose α not algebraic over F

then $1, \alpha, \alpha^2, \ldots$ are F-linearly independent

$F[\alpha] \cong F[\alpha]$ contains kernel nontrivial map $F[\alpha] \to F[\alpha]$

no kernel in obvious map

and $F[\alpha]$ not a field.

In showing $x^3 - 2$ not irreducible over $\mathbb{Q}[i]$

$x^3 - 2$ reducible over $\mathbb{Q}[i] \implies x^3 - 2$ has a root in $\mathbb{Q}[i]$

\[t = \frac{p(x)}{q(x)} \text{ some rational function} \]

$k(x)$

$1 \cup k(t)$

x as member of $k(x)$

$(k(t))[x] \quad p(x)$

$(k[\mathbb{C})][x] \quad p(x) - tQ(x)$
§ 13.4 continued

F a field

An algebraic closure for F will be an algebraically closed field that is algebraic over F.

Last time we proved existence of algebraic closure, want uniqueness.

Lemma Let L be an algebraically closed field, let k be a simple extension of F, and suppose there is an embedding (i.e., an injective field homomorphism) \(\sigma : F \rightarrow L \). Then \(\sigma \) extends to an embedding \(\hat{\sigma} : K \rightarrow L \) (i.e., there is an embedding \(\hat{\sigma} : K \rightarrow L \) s.t. \(\hat{\sigma}|_F = \sigma \)).

Proof \(K = F(a) \) and let \(p(x) = m_a(x) \in F[X] \)

Extending \(\sigma \) to an injective ring homomorphism

\[\sigma : F[X] \rightarrow \sigma(F)[X], \]

\(\sigma(p(x)) \) is irreducible in \(\sigma(F)[X] \)

Since L is algebraically closed, can choose a root \(\beta \in L \) of \(\sigma(p(x)) \). We have

\[K = F(a) \cong F[X]/(p(x)) \xrightarrow{\alpha(p(x))} \sigma(F)[X]/\sigma(p(x)) \cong (\sigma(F)[X]/\sigma(p(x))) \cong \sigma(F)[X]/\sigma(p(x)) \cong L. \]

If \(K \) is a simple extension of \(F \), and \(F \) has an embedding into an algebraically closed field \(L \), can the embedding extend to an embedding of \(K \) into \(L \).
We have an embedding \(\phi : K \to L \), with

\[
\phi|_F = 0
\]

Taking \(\phi = \psi \) lemma follows. \(\square \)

Theorem Let \(L \) be an algebraically closed field

Let \(K \) be an algebraic extension of \(F \)

and let \(\phi : F \to L \) be a field embedding. Then

1. There exists an embedding \(K \to L \) restricting to \(\phi \) on \(F \)

2. If \(K \) algebraically closed and \(L \) is algebraic over \(\phi(F) \) then the embedding \(K \to L \) is an isomorphism.

Proof Let \(S \) be the set of all pairs \((K, \tau) \)

where \(K \) is a subfield of \(L \) containing \(F \) and

\(\tau : K \to L \) is an extension of \(\phi : F \to L \)

Since \((F, \phi) \in S \), so \(S \neq \emptyset \). For \((K, \tau) \)

and \((K', \tau') \in S \), say that \((K, \tau) \leq (K', \tau') \) if

\(K \subseteq K' \) and if \(\tau|_K = \tau' \)

So \(S \) is partially ordered set.

Moreover if \((K_1, \tau_1) \leq (K_2, \tau_2) \leq \ldots \) is a

chain in \(S \), then \((K_\infty, \tau_\infty) \in S \) for

\[
K_\infty = \bigcup K_i \quad \tau_\infty : K_\infty \to L \quad \lambda_i \in K_i \quad \tau_i = \tau_i (\lambda_i)
\]

If \(L \) algebraically closed, \(F \) embeds into \(L \), and \(K \) algebraic extension of \(F \),

then the embedding extends to an embedding of \(K \) into \(L \), and if \(K \) algebraically closed, then \(K \cong L \).

Start by taking \(S \) set of pairs \((K, \tau) \). \(K \leq K', \phi_F, \tau : K \to L \) extending \(F \to L \)

Take a partial order \((K, \tau) \leq (K', \tau') \) if \(K \subseteq K' \) and \(\tau|_K = \tau' \).
Zorn's Lemma implies to \(S \), and exists a maximal member of \(S \), say \((k_{\text{max}}, \tau_{\text{max}})\) of \(S \).

Now, \(k_{\text{max}} = K \).

Suppose contrary \(k_{\text{max}} \neq K \).

Take \(\alpha \in K \setminus k_{\text{max}} \).

Since \(K \) algebraic over \(F \), \(\alpha \) algebraic over \(k_{\text{max}} \).

\(\tau_{\text{max}} \) extends to embedding \(k_{\text{max}}(\alpha) \to L \).

Lemma prior, \(\tau_{\text{max}} \)(\(k_{\text{max}}, \tau_{\text{max}} \)) not maximal \(\Rightarrow \) \(k_{\text{max}} = K \).

\(\Rightarrow \) \(\tau_{\text{max}} \) extends to embedding \(K \to L \) and \(\tau \) follows \(\square \).

For (2) suppose as assumed \(K \) algebraically closed and \(L \) algebraic over \(\sigma(F) \). By (1), extend \(\sigma \) to a field embedding \(K \to L \).

\(\Rightarrow \) \(L \) is algebraic extension of algebraically closed (why) field \(\sigma(K) \). By earlier, \(\sigma(K) \) must have no proper extension, so \(\sigma(K) = L \), and \(\tau \) follows \(\square \).

By Zorn's Lemma, get a maximal \((k_{\text{max}}, \tau_{\text{max}})\). \(k_{\text{max}} = K \) since otherwise \(\alpha \in K \setminus k_{\text{max}} \) \(k_{\text{max}}(\alpha) \) extension of \(k_{\text{max}} \) and \(\tau_{\text{max}} \) extends, contradicting maximality.

If \(K \) algebraically closed, embedding of \(K \) into \(L \) implies \(L \) extends \(K \), but \(K \) algebraically closed so \(K = L \).
Algebraic closures of F are isomorphic.

Corollary: Let K, L be algebraic closures of F. Then there is an isomorphism $\psi : K \to L$ such that $\psi|_F$ is the identity on F.

\[
\begin{array}{c|cc}
K & \psi & L \\
F & \frac{\text{id}}{1} & F \\
\end{array}
\]

Remark: Can now refer to the algebraic closure of F.

Proposition: Let $f(x) \in F[x]$ be nonscalar. Let K, K' be splitting fields for $f(x)$ over F. Then there is an isomorphism $K \to K'$ that restricts to the identity on F.

Proof: Let L be the algebraic closure of F. Note that L algebraic over F, since K' algebraic over F. Then L is also the algebraic closure of F (with $K' \subseteq L$).

Now, by Lemma, there is an embedding

\[
\begin{array}{c|cc}
K & \rightarrow & L \\
F & \rightarrow & F \\
\end{array}
\]

Now $K = F(\alpha_1, \ldots, \alpha_n)$ where $\alpha_1, \ldots, \alpha_n$ are in L, K and $f(x) = \lambda(x - \alpha_1) \cdots (x - \alpha_n) \in F[x]$ for some $\lambda \in F$.

Splitting fields isomorphic
\[f(x) = a_n(x - \sigma(a_1)) \cdots (x - \sigma(a_n)) \text{ in } L[x] \]
\[\sigma(a_1), \ldots, \sigma(a_n) \text{ is a complete list of the roots in } L \text{ of } f(x). \]

But \(K' \leq L \) is a splitting field for \(f(x) \) over \(F \)
so \(K' = F(\sigma(a_1), \ldots, \sigma(a_n)) \)
\[\therefore K' = \sigma(K) \text{ (think about this).} \]

Proposition follows \(\square \)

Fact we'll use without proof:

FUNDAMENTAL THEOREM OF ALGEBRA

\(\mathbb{C} \) is algebraically closed.

\[\text{§ 13.5 SEPARABLE and INSEPAREABLE EXTENSIONS} \]

Throughout, \(F \) is a field. To start...

Let \(f(x) \in F[x] \) not scalar and write

\[f(x) = \lambda (x - \alpha_1)^{n_1} (x - \alpha_2)^{n_2} \cdots (x - \alpha_k)^{n_k} \]

for \(\lambda \in F \), and for \(\alpha_1, \ldots, \alpha_k \) in some splitting for \(f(x) \) over \(F \), with \(\alpha_1, \ldots, \alpha_k \) distinct

and with \(n_1, \ldots, n_k \) positive integers.
For $1 \leq i \leq k$ we say that α_i is a **SIMPLE ROOT** when $n_i = 1$, and a **MULTIPLE ROOT** otherwise. If $n_1 = n_2 = \ldots = n_k = 1$, we say $f(x)$ is **SEPARABLE**.

Say $f(x)$ is **INSEPARABLE** otherwise.

Note. Separability or inseparability does not depend on the choice of splitting field. (why?)

Ex. Let $F = \mathbb{F}_p(t)$

t indeterminate, \mathbb{F}_p the field with p elements, p prime

Consider $x^p - t \in F[x]$.

Let α be a root of $x^p - t$ in some field extension of F.

Since the characteristic of F is p (check),

$x^p - t = (x - \alpha)^p$ (check).

Set $R = \mathbb{F}_p[t]$. Then R is an integral domain and F is the field of fractions of R.

Also, the ideal of R generated by t, i.e. (t) is a prime ideal (indeed, maximal) $R/(t) = \mathbb{F}_p$.

So by the general form of Eisenstein's Criterion, and

so $x^p - t$ is irreducible in $R[x]$. By general version of Gauss' Lemma, $x^p - t$ irreducible in $F[x]$.

A root of $f(x)$ is simple if only one factor of $(x - \alpha)$ in $f(x)$ multiple otherwise.

$f(x)$ is separable if all roots are simple.
We conclude $x^p - t$ irreducible in $F[x]$, and has exactly one root in any splitting field over F.