§13.2 Algebraic Extensions (cont)

Let K/F, $a \in K$, algebraic over F if $\exists f \in F[x] \neq 0$ algebraic extension $[K:F]$.

Thm $[K:F] < \infty \iff K$ finitely generated by algebraic elements. $K = F(a_1, \ldots, a_n)$, a_i algebraic over F.

Eg α/β algebraic if α, β are.

$m_{\alpha, F}(X)$ minimum monic polynomial vanishing at α.

Def Let $\alpha \in K$ be algebraic over F. The degree of $m_{\alpha, F}(X)$ is called the DEGREE of α.

Lemma Let $\alpha \in K$ be a root of some $f(x) \in F[x]$.

Then the degree of $\alpha \leq \deg f(x)$.

Pf From last time we know that $m_{\alpha, F}(X)$.

From last time $m_{\alpha, F}(X) \mid f(x)$.$\square$

Prop Suppose $K = F(\alpha_1, \ldots, \alpha_m)$ and each α_i is algebraic over F of degree n_i. Then $[K:F] = n_1 \cdots n_m$.
If set $F_i = F(\alpha_1, \ldots, \alpha_i)$ for $1 \leq i \leq n$ and set $F_0 = F_1$ for each

$$F_i = F_{i-1} \cup \{\alpha_i\}$$

the degree of α_i over F_{i-1} is the degree of α_i over $F_1 = F$.

So result follows.

$[K:F] = [F_n:F_{n-1}][F_{n-1}:F_{n-2}] \cdots [F_1:F_0] \\ \leq n_1 \cdots n_r$

Corollary

Let $\alpha, \beta \in K$, $\beta \neq 0$. Suppose α, β algebraic over F. Then $\alpha + \beta$, $\alpha \beta$, α / β algebraic over F.

Corollary

Let $F \subseteq L$ be a field extension.

Let $K = \{\alpha \in L \mid \alpha$ is algebraic over $F\}$.

Then K is a field extension of F.

If K is closed under field operations, so is a subfield of L.

Ex. Set $\overline{Q} = \{\alpha \in C \mid \alpha$ algebraic over $Q\}$

not a finite extension, since, e.g. $\sqrt{2} \in \overline{Q}$, but are of arbitrarily high degree, since $x^n - 2$ is irreducible for all n (by Eisenstein), and since $[Q(\sqrt[2]{2}) : Q] = [Q(\sqrt[2]{2}) : Q] [Q(\sqrt[2]{2}) : Q]$

so that $[Q(\sqrt[2]{2}) : Q] = \infty$ by before
Note that \(\overline{\mathbb{Q}} \) is countable, \(\overline{\mathbb{Q}} \subseteq \overline{\mathbb{C}} \).

Theorem. \(F \subseteq K \subseteq L \) field extensions. If \(K \) is algebraic over \(F \) and \(L \) is algebraic over \(K \), then \(L \) is algebraic over \(F \).

Proof. Choose \(a \in L \). Then
\[
a_n a^n + \ldots + a_0 = 0
\]
for some positive \(n \) and \(a_0, \ldots, a_n \in K \). Consider \(F(a_0, \ldots, a_n) \). Each of the \(a_0, \ldots, a_n \) is algebraic over \(F \).

\[
[F(a_0, \ldots, a_n) : F] < \infty \text{ by above}
\]

Also, \([F(\alpha, a_0, \ldots, a_n) : F(a_0, \ldots, a_n)] < \infty \)

since \(\alpha \) is algebraic over \(F(a_0, \ldots, a_n) \).

\[
[F(\alpha) : F] < \infty \text{ since } F(\alpha) \subseteq F(\alpha, a_0, \ldots, a_n)
\]
so \(\alpha \) is algebraic over \(F \).

\[\Box\]

Homework for Thursday: posted

- §13.3 Classical Straightedge & Compass

Consider the following (idealized) constructions in the plane:

1. Drawing line segment connecting two points
2. Finding the intersection of two segments
3. Drawing a circle of given center, radius
4. Finding intersections of a circle with a line or circle
We also have a designated, fixed length 1.

Def: A real number that can be realized as a length using above constructions is CONSTRUCTIBLE.

Prop 1. If \(a, b \in \mathbb{R} \) are constructible, then so are:
- \(a + b \)
- \(a - b \)
- \(ab \)
- \(a/b \)
- \(\sqrt{a} \)

In particular, the set of constructible numbers is a subfield of \(\mathbb{R} \) containing \(\mathbb{Q} \) and closed under square roots.

Prop 2. Let \(\alpha \in \mathbb{R} \) be constructible, then \([\mathbb{Q}(\alpha): \mathbb{Q}] = k^t \) for some nonnegative integer \(t \).

Pf: Constructible numbers arise from degree 2 or fewer extensions.

The Classical Unsolved Questions

I. Doubling the cube (volume of a cube 2

II. Trisect an angle

III. Squaring the circle (i.e., construct a square of same area)

Why

I. \(\sqrt[3]{2} \) not constructible, since \([\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3 \neq k^t \)

II. Would imply the root of irreducible \(x^3 - 3x - 1 \) is constructible.

III. Would imply \(\pi \) is algebraic.
§13.4 Splitting Fields and Algebraic Closure

Throughout, let F be a field.

Definition. Let $f(x) \in F[x]$, not scalar, and let K be an extension field of F.

Say $f(x)$ Splits Completely in $K[x]$ if there exist λ, α_1, \ldots, $\alpha_n \in K$ s.t.

$$f(x) = \lambda(x - \alpha_1) \cdots (x - \alpha_n)$$

Say that K is a Splitting Field over F for $f(x)$ if $f(x)$ splits in $K[x]$ but does not split over any proper subfield of K containing F.

Theorem. Let $f(x) \in F[x]$ not scalar. Then there exists an extension field of F that is a splitting field for $f(x)$ over F.

Proof. First, if $\deg f(x) = 1$, then F contains all roots of $f(x) = ax + b$.

Assume now $\deg(f(x)) = n > 1$. Then we know there exists a field extension $F(\alpha)$ of F with α a root of $f(x)$. Therefore $f(x) = (x - \alpha)g(x)$ in $(F(\alpha))[x]$ for some $g(x) \in (F(\alpha))[x]$. Note $\deg g(x) = n - 1$ so by induction...
So there is a field extension L of $F(a)$ in which $g(x)$ splits completely.

\[f(x) \text{ splits completely in } L. \]

Now take K the intersection of all subfields of L containing F in which $f(x)$ splits completely.

\[eg \quad x^3 - 2 \]