§13.2 ALGEBRAIC EXTENSIONS

Let F be a field and K/F be a field extension.

Def. An element $\alpha \in K$ is algebraic over F if α is a root of a polynomial in $F[x]$.

If α is not algebraic, α is TRANSCENDENTAL over F.

If all $\alpha \in K$ are algebraic over F, then K/F is an ALGEBRAIC EXTENSION.

Proof. Let $\alpha \in K$ be algebraic over F. Then there exists a unique, monic, irreducible polynomial $m_{\alpha,F}(x) \in F[x]$ for which α is a root.

Also, if α is a root of some $f(x) \in F[x]$, then $m_{\alpha,F}(x) \mid f(x)$.

If $g(x) = g_n x^n + \ldots + g_0$ for $g_0, \ldots, g_n \in F$ have α as a root, of minimal degree $n > 0$. Replacing $g(x)$ with $\left(\frac{1}{g_n}\right)g(x)$ can assume $g(x)$ monic.
Suppose \(g(x) = a(x)b(x) \) in \(F[x] \).

then \(a(a) b(a) = g(a) = 0 \) in \(F \)

\[\Rightarrow \exists \mu \text{ such that } a(a) = 0 \text{ or } b(a) = 0 \]

By choice of \(g(x) \), one of \(a(x) \) or \(b(x) \) must be scalar, the other degree \(m \), i.e. one of \(a(x) \) or \(b(x) \)

is a unit in \(F[x] \) and so \(g(x) \) irreducible.

Now suppose \(\alpha \) is a root of \(f(x) \in F[x] \),

\(f(\alpha) \neq 0 \) using the division algorithm, write

\[f(x) = q(x)g(x) + r(x) \]

for \(q(x), r(x) \in F[x] \) and with either \(r(x) = 0 \) or \(\deg r(x) < \deg g(x) \).

Note:

\[r(\alpha) = f(\alpha) - q(\alpha)g(\alpha) = 0 \]

Due to minimal degree (or all assumptions on \(g(x) \)).

see that \(r(\alpha) = 0 \), and thus \(g(x) \mid f(x) \) in \(F[x] \).

Remaining: \(g(x) \) is unique.

Suppose \(p(x) \) is monic irreducible polynomial in \(F[x] \)

with root \(\alpha \).

Then by the above, \(g(x) \mid p(x) \), since \(p(x) \) irreducible,

\(g(x), p(x) \) associates, both monic \(\Rightarrow g(x) = p(x) \).
Def. Let $\alpha \in K$, a \textit{algebraic over} F. Using the \textit{proceeding}, refer to the unique \textit{monic irreducible polynomial in} $F[x]$ \textit{vanishing at} α as the \textit{minimal polynomial} of α over F, written $m_{\alpha,F}(x)$.

Corollary: Let $F \subseteq L \subseteq K$ be field extensions and suppose $\alpha \in K$ is algebraic over both F and L. Then $m_{\alpha,L}(x) \mid m_{\alpha,F}(x)$ in $L[x]$.

Proof (using proceeding). \hfill \Box

Recall from last time: suppose $\alpha \in K$ is algebraic over F, $m(x)$ is its minimal polynomial over F for α, $\deg m(x) = n$.

Then $F(\alpha) \cong F[x]/\langle m(x) \rangle$ \hfill [proved last time]

$[F(\alpha) : F] = n = \deg m(x)$

Prop. Let $\alpha \in K$. Then α is algebraic over F if and only if $[F(\alpha) : F] < \infty$.

Proof \Rightarrow from immediately above.
Consider \(\{ 1, \alpha, \alpha^2, \ldots \} \).

Assuming \([F(\alpha) : F] = n < \infty\), this set is

\(F \)-linearly dependent. So there exists

\[1, \alpha, \alpha^2, \ldots, \alpha^n \]

such that \(\alpha^n + a_1 \alpha + \ldots + a_n \alpha = 0 \)

i.e. it is linearly dependent.

In other words, \(\alpha \) is a root of \(a_n \alpha^n + a_{n-1} \alpha^{n-1} + \ldots + a_1 \alpha + a_0 \in F[X] \).

i.e. a algebraic over \(F \). \(\Box \)

Theorem

Let \(F \leq K \leq L \) be field extensions. Then

\[[L : F] = [L : K][K : F] \]

(Infinitely degree extensions allowed).

Assume first \([L : K] = m \leq \infty\), \([K : F] = n < \infty\)

let \(\alpha_1, \ldots, \alpha_m \) be a \(K \)-basis for \(L \), \(\beta_1, \ldots, \beta_n \)

be an \(F \)-basis for \(K \). Then every element of \(L \)

can be written as

\[(b_1 \beta_1 + b_2 \beta_2 + \ldots + b_n \beta_n) \alpha_1 + \ldots + (b_{m1} \beta_1 + \ldots + b_{mn} \beta_n) \]

i.e. The \(\alpha_i \beta_j \) products \(F \)-span \(L \).

To show independence.
To show independence, suppose otherwise.

Then there exist \(b_{ij} \in F \) for \(1 \leq i \leq m \) \(1 \leq j \leq n \) not all zero with

\[
\sum_{i,j} b_{ij} \alpha_i \beta_j = 0
\]

Rewrite

\[
(b_{11} \beta_1 + b_{12} \beta_2 + \ldots + b_{1n} \beta_n) \alpha_1
\]

\[
\alpha_1
\]

\[
+ \ldots + (b_{m1} \beta_1 + b_{m2} \beta_2 + \ldots + b_{mn} \beta_n) \alpha_m = 0
\]

\[a_m\]

[N.B. different \(b_{ij} \) than in spanning proof]

so \(\{\alpha_1, \ldots, \alpha_m\} \) \(K \)-linear dependent, contradicting since \(b_{ij} \) not all zero, \(\alpha_1, \ldots, \alpha_m \) cannot be all zero, since \(\beta_1, \ldots, \beta_n \) are independent (F indep)

Hence \(\alpha_1 \beta_1 \) \(F \)-linear independent, so

\[
\]

Cases where one of \([L:F],[L:K]\) is or \([K:F]\)

are infinite left as an exercise \(\Box \)
Example

Consider \(x^3 - 3 \in \mathbb{Q}[x] \)

irreducible by Eisenstein's criterion (and Gauß lemma)

Let \(\alpha \in \mathbb{R} \) be a root of \(x^3 - 3 \)

Now that \([\mathbb{Q}(\alpha) : \mathbb{Q}] = 3\) from before

Now suppose \(\sqrt{2} \in \mathbb{Q}(\alpha) \), then \(\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\alpha) \)

But then

\[
3 = [\mathbb{Q}(\alpha) : \mathbb{Q}] = [\mathbb{Q}(\alpha) : \mathbb{Q}(\sqrt{2})] [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}]
\]

\[
= \sqrt{2} \quad \text{contradiction.}
\]

Def

A field of the form \(F(\alpha_1, \ldots, \alpha_n) \) is

Finitely Generated over \(F \) (as a field)

Lemma

Let \(\alpha_1, \ldots, \alpha_n \in K \) a field extension of \(F \)

Then

\[
F(\alpha_1, \ldots, \alpha_n)
\]

is a field if and only if

\[
\big((F(\alpha_1))(\alpha_2)\big)(\alpha_3) \ldots (\alpha_n)
\]

Pf

First assume \(n = 2 \), \(\alpha = \alpha_1 \), \(\beta = \alpha_2 \)

Since \((F(\alpha))(\beta) \) is a field containing \(F, \alpha, \beta \),

we have \(F(\alpha, \beta) \subseteq (F(\alpha))(\beta) \)

On the other hand, since \(F(\alpha, \beta) \) is a field containing \(F \)

and \(\alpha \), we have \(F(\alpha) \subseteq F(\alpha, \beta) \).

Next, since \(F(\alpha) \) is field containing \(F \), \(\beta \), \((F(\alpha))(\beta) \subseteq F(\alpha, \beta) \)

hence equal. \(\blacksquare \)
Theorem

\[[K : F] < \infty \iff K \text{ is finitely generated over } F \]

\((\Rightarrow) \)

Let \(\alpha_1, \ldots, \alpha_n \) be an \(F \)-basis for \(K \). Then \(K = F(\alpha_1, \ldots, \alpha_n) \) in particular.

Also, each \(F(\alpha_i) \subseteq K \) for all \(1 \leq i \leq n \).

\(\therefore \alpha_1, \ldots, \alpha_n \) are algebraic over \(F \) (exercise).

\(\therefore \) \(K \) generated by finitely many elements algebraic over \(F \).

\((\Leftarrow) \)

Suppose \(K = F(\alpha_1, \ldots, \alpha_n) \) where \(\alpha_1, \ldots, \alpha_n \in K \)

are all algebraic over \(F \).

For \(1 \leq i \leq n \) set \(F_i = F(\alpha_1, \ldots, \alpha_i) \)

set \(F_0 = F \) (note \(F_n = K \)) so we have extensions

\[F = F_0 \subseteq F_1 \subseteq \ldots \subseteq F_{n-1} \subseteq F_n = K \]

find \(F_i = F_{i-1}(\alpha_i) \) for \(1 \leq i \leq n \).

By above, since each \(\alpha_i \) is algebraic over \(F_{i-1} \) for \(1 \leq i \leq n \), we have

\[[F_i : F_{i-1}] = [F_i(\alpha_i) : F_{i-1}] < \infty \]

But \([K : F] = [F_n : F_{n-1}][F_{n-1} : F_{n-2}] \cdots [F_1 : F_0] < \infty \)

HW 2 Next Thursday.