Question \[H, K \leq G \quad HK \cong H \times K \quad \Rightarrow \quad H \cap K = 1 \]

Non-zero torsion free abelian group is free?

Recall a an abelian group, additive
\[tA = \{ a \in A \mid na = 0 \quad \text{for some } n = 1, 2, \ldots\} \]

Then non-zero finitely generated torsion free group \(A \)
is free.

\(\text{Def} \) A free abelian group rank \(r \) if \(A \cong \mathbb{Z} \times \mathbb{Z} \times \ldots \)

Lemma A an abelian group. Then \(A/tA \) is torsion free.

Proof Choose \(a + tA \in A/tA \) if
\[n(a + tA) = 0 \quad \text{then } \quad na \in tA \quad \text{so } \quad a + tA = 0 + tA \]
\[\therefore \quad t(\frac{A}{tA}) = \langle 0 \rangle \quad \text{in } \frac{A}{tA} \quad \Box \]

Note \(|A| = n < \infty \) must not be torsion since \(na = 0 \) back

Lemma A finitely generated torsion abelian group must be finite.
If \(A = \langle a_1, \ldots, a_k \rangle \) be additive abelian group, show either
that \(A = \{ n_1 a_1 + n_2 a_2 + \ldots + n_k a_k \mid n_1, \ldots, n_k \in \mathbb{Z} \} \)
but \(A \) is torsion, so \(ma = 0 = mn_1 a_1 + mn_2 a_2 + \ldots + mn_k a_k \).
A torsion, so for each \(a_i \in M \), \(m_i a_i = 0 \)

\[
\text{thus } M = \{{} \text{im}_i \}_{i=1}^3
\]

then exist at most \(m \) may distinct sums, since

\[
A = \{ \sum n_i a_i : -M \leq n_1, n_2, \ldots, n_r \leq M \}
\]

\[
|A| < \infty \quad \Box
\]

Then let \(A \) be finitely generated abelian group

Then \(A \) is isomorphic to a direct product of an abelian group of finite rank and a finite group

i.e. \(|B| < \infty \), \(A \cong \mathbb{Z}^r \times B \)

pf: Consider projection \(\pi : A \to A/\tau A \)

Then \(A/\tau A \) is finitely generated \& torsion free (from before)

\[
\therefore \pi(A) \text{ is free by earlier}
\]

Also \(\ker \pi = \tau A \) \& again by earlier

\[
A \cong \pi(A) \times \tau A
\]

Remains to show \(\tau A \) finite, but suffices to show \(\tau A \) is finitely generated

Note, since \(A \cong \pi(A) \times \tau A \), and since there is a surjection

\[
\pi(A) \times \tau A \longrightarrow \tau A
\]

\[(u, v) \longrightarrow v \]

we see \(\tau A \) is an image of finitely generated \& \(\tau A \) is finitely generated
Cor. A finitely generated abelian group, then
\[A \cong \mathbb{Z} \times \cdots \times \mathbb{Z} \times \mathbb{Z}/m_1 \mathbb{Z} \times \cdots \times \mathbb{Z}/m_n \mathbb{Z} \]
for some \(r \geq 0 \) and \(m_1, \ldots, m_n \in \mathbb{Z}^+ \)

This is the core of the fundamental theorem of finitely generated abelian groups.

\[\text{FREE Groups of \mathbb{Z}} \]

\[\langle r, s \mid r^n = s^2 = 1, \ rs = sr^{-1} \rangle \]

denote \(S \) be a nonempty set.

For all positive integers \(m \) and all \(S_1, \ldots, S_m \in S \),
we may write the FORMAL PRODUCT

\[S_1 S_2 \cdots S_m \]

Then the formal products of \(S \) are called WORDS in the elements of \(S \).

In general, a word in \(S \) is not an element of \(S \).

Define \(S^{-1} \) to be the set of "formal inverses", \(s^{-1} \), for \(s \in S \).

One formally, \(S^{-1} \) is a set disjoint to \(S \) with bijection \(S \leftrightarrow S^{-1} \).
Now let $X = S \cup S^{-1}$

We consider words now in X

If $u = x_1 \ldots x_m$

$$v = x_{m+1} \ldots x_n$$

are words in X for $x_1 \ldots x_n \in X$

define uv to be $x_1 \ldots x_m x_{m+1} \ldots x_n$, a word in X,
called the **concatenation** of u and v.

Two words u, v in X are **directly equivalent** provided for some $x \in X$ that one of the following four cases occurs:

1. $u = v$ (i.e., *otherwise identical*)

2. $u = xx^{-1}v$

3. $u = vxx^{-1}$

4. $u = xx^{-1}s$ and $v = rs$

for some words r, s in X or

$v = xx^{-1}s$ and $u = rs$

Two words u, v in X are **equivalent** provided

there is a finite sequence of words in X

$$u = w_1, w_2, \ldots, w_n = v$$

such that w_i directly equivalent to w_{i+1}

Exercise - this is an equivalence relation.
Lemma \[u, u', v, v' \] are words in \(X \). Suppose \(u = u' \) and \(v = v' \).

Lemma \(x, y \in X, \; \) then \(xx' \sim yy' \) \(xx' \sim xx' yy' \sim yy' \) by above rules.

Let \(I \) denote the equivalence class of \(xx' \).

Lemma \(u, u', v, v' \) be words in \(X \).

Suppose \(u = u' \) and \(v = v' \) then \(u v = u v' \).

If we first show that \(u v \sim u v' \) by definition, there is a sequence \(u = w_1, w_2, ..., w_n = v \) where each \(w_i \) is directly equivalent to \(w_{i+1} \).

By an induction omitted, we can reduce to the case where \(u \) is directly equivalent to \(u' \).

\[u' = xx' u \text{ or } u' = u xx' \]

\[u' = xx' s \text{ for } u = rs \]

\[u' = rs \text{ for } u = rs xx' \]

for some \(x \in X, \text{ } r, s \text{ words in } X \).

In any of these cases, \(u v \sim u v' \) (check).

Similarly \(u v \sim u v' \) so \(u v = u v' \).

So now, for a word \(u \) in \(X \), let \([u] \) be the equivalence class of \(u \). Given words \(u, v \) in \(X \), define \([u][v] = [uv] \), which is well-defined by the lemma.

Also, for all words \([u][1] = u \) \([xx^{-1}] = [xx^{-1}] = [xx^{-1} u] = [u]^{-1} \).
Let \(F(S) := \{ [u] \mid u \text{ a word in } X \} \)

Theorem \(F(S) \) is a group under concatenation, with identity \(1 \) as above.

Proof. Well-definedness from above:
\[
u = x_1 \ldots x_k, \quad v = x_{k+1} \ldots x_m, \quad w = x_{m+1} \ldots x_n
\]

Then:
\[
([u][v])[w] = [u][v][w] = [x_1 \ldots x_m][w] = [x_1 \ldots x_n]
\]

\[
[u][v][w] = [u][x_{k+1} \ldots x_n] = [x_1 \ldots x_n]
\]

so associativity.

We checked that \(1 \) is an identity element.

Closure by definition.

Lastly, given \(x_1 \ldots x_m \in X \), check that:
\[
[x_1 \ldots x_m][x_1^{-1} x_1^{-1} \ldots x_1^{-1}] = [1]
\]

\[
[x_1 \ldots x_n x_n^{-1} \ldots x_1^{-1}] = [x_1 \ldots x_{n-1}][x_n x_n^{-1}][x_{n-1}^{-1} \ldots x_1^{-1}]
\]

\[
= [x_1 \ldots x_{n-1}]1[x_{n-1}^{-1} \ldots x_1^{-1}] \quad \text{by induction} \quad \square
\]

We call \(F(S) \) the FREE GROUP on \(S \).

Now define a map \(S \overset{\iota}{\rightarrow} F(S) \) which sends \(s \mapsto [s] \).

Lemma \(S \overset{\iota}{\rightarrow} F(S) \) is injective.

It follows by def'n of equivalence. \(\square \)