Solution

\(G \) is a finite group, \(\sigma \) an automorphism

\(\text{i.} \ \ \sigma(g) = g \iff g = 1 \)
\(\text{ii.} \ \ \sigma^2 = \text{ID}_G \)

Then \(G \) is abelian

Claim: Every element of \(G \) can be written

\[g = x^{-1} \sigma(x) \]

If \(\text{consider } T : G \rightarrow G, \quad x \mapsto x^{-1} \sigma(x) \)

For \(x, y \in G \)

\[T(x) = T(y) \]

\[\iff x^{-1} \sigma(x) = y^{-1} \sigma(y) \]

\[yx^{-1} = \sigma(y) \sigma(x)^{-1} \]

\[= \sigma(yx^{-1}) \]

So \(yx^{-1} = 1 \implies x = y \) by \(\text{i.} \)

\(T \) injective, thus \(G \) finite \(\implies \) \(T \) surjective

Claim: \(\sigma(g) = g^{-1} \)

Note: \(\sigma(x^{-1} \sigma(x)) = \sigma(x^{-1}) x = (x^{-1} \sigma(x))^{-1} \)

Claim follows, since this is true of every element \(g \)

To finish, refer to the proof that \(G \) abelian \(\iff \) \(g \mapsto g^{-1} \) is a homomorphism.

\[x^{-1} \sigma(x) \text{ is injective } \implies G \text{ finite } \implies x^{-1} \sigma(x) \text{ is surjective} \]

\[\sigma(x^{-1} \sigma(x)) = \sigma(y^{-1} yx^{-1}) \implies xy^{-1} \sigma(x) = \sigma(y^{-1}) \sigma(y) \]

\[\sigma(x^{-1} \sigma(x)) = \sigma(x^{-1}) x = (x^{-1} \sigma(x))^{-1} \implies \sigma: g \mapsto g^{-1} \]
§2.4 Let G be a group

Recall $\langle A \rangle$ is a subgroup

\times A subset of G
\times $\langle A \rangle = \bigcap H$
$\qquad A \subseteq H \subseteq G$

Remark $\langle \emptyset \rangle = \langle e \rangle = \{e\}$

Since $\emptyset \subset \langle e \rangle \leq G$

Prop Assume A nonempty subset of G

Let $\overline{A} = \left\{ a_1^{l_1} a_2^{l_2} \ldots a_n^{l_n} \mid a_1, a_2, \ldots, a_n \in A, \right. \left. l_1, l_2, \ldots \in \mathbb{Z} \right\}$

Then $\langle A \rangle = \overline{A}$

Proof

First $\overline{A} \subseteq G$

to show $A \subseteq \overline{A}$ so $\overline{A} \neq \emptyset$

Next, choose $a_1^{l_1} a_2^{l_2} \ldots a_m^{l_m}$ and $a_{m+1}^{l_{m+1}} \ldots a_n^{l_n}$

both in \overline{A} for $l_1, \ldots, l_n \in \mathbb{Z}$ $a_1, \ldots, a_n \in A$

Then $a_1^{l_1} \ldots a_m^{l_m} \in \overline{A}$, so subgroup of G

$\overline{A} \triangleleft G$ so $\langle A \rangle \leq \overline{A}$

$\langle A \rangle$ is the minimal subgroup containing A.

$\overline{A} = \left\{ a_1^{l_1} a_2^{l_2} \ldots a_n^{l_n} \mid l_1, \ldots, l_n \in \mathbb{Z}, \right. \left. a_1^{l_1} a_2^{l_2} \ldots a_n^{l_n} \in A \right\}$.

Then $\overline{A} = \langle A \rangle$.
On the other hand if \(A \leq H \leq G \) then

\[
\bar{A} \leq H \quad \text{because} \quad H \text{ closed so}
\]

\[
\bar{A} \leq \bigcap H = \langle A \rangle
\]

Examples

1. Cyclic groups are

 \(G = \langle g \rangle \) for some \(g \in G \)

2. \(\mathbb{Q}^x = \langle \mathbb{Z} \setminus \{0\} \rangle \)

3. \(D_{2n} = \langle s, r \rangle \) where \(r \) is rotation, \(s \) reflection

Finally generated

Def. When \(G = \langle g_1, \ldots, g_n \rangle \) some \(g_1, \ldots, g_n \in G \)

we say \(G \) is **finally generated**

Some infinite groups are finally generated, e.g. \(\mathbb{Z} = \langle 1 \rangle \)

E.g. \(\mathbb{Q}^x \) is **not** finally generated

Abelian simple

Appendix: Additive Notation

\(G \) additive abelian groups

\(A \leq G \quad A \neq \emptyset \)

Then \(\langle A \rangle = \left\{ \sum_{i=1}^{n} l_i g_i \mid l_i \in \mathbb{Z} \right\} \)

further suppose \(G \) finally generated

\(G = \langle g_1, \ldots, g_n \rangle \) some \(g_1, \ldots, g_n \in G \)

Cyclic groups are generated from a single element

\(\mathbb{Q}^x = \langle \mathbb{Z} \setminus \{0\} \rangle \)

\(D_{2n} = \langle s, r \rangle \) where \(r, s \) appropriate rotations, reflections

If \(A \subseteq G \), an abelian additive group, \(\langle A \rangle = \left\{ \sum_{i=1}^{n} l_i a_i \mid l_i \in \mathbb{Z} \right\} \) in fixed order
L(G) set of subgroups

\[G = \{ l_1 g_1, \ldots, l_m g_m \mid l_i, \ldots, l_m \in \mathbb{Z} \} \]

depends on being abelian

§ 2.5 Briefly

let \(G \) be a group

let \(L(G) = \{ H \mid H \leq G \} \)

let \(H, K \in L(G) \)

\[\langle H \cup K \rangle = : \langle H, K \rangle \]

is the unique smallest (with inclusion) subgroup of \(G \) containing both \(H \) and \(K \)

Refer to \(\langle H, K \rangle \) as the JOIN of \(H \) and \(K \)

Also \(H \cap K \) is the largest subgroup of \(G \) contained within both \(H \) and \(K \), called the MEET of \(H \) and \(K \)

\(L(G) \) together with \(\cap \) and \(\cup \) is a LATTICE

Example \(\mathbb{Z}/12\mathbb{Z} \)

\[\mathbb{Z}/12\mathbb{Z} = \langle 1 \rangle \]

"Lattice of subgroups of \(\mathbb{Z}/12\mathbb{Z} \)"

The set of all subgroups \(H \leq G \) is a lattice, with \(\langle H, K \rangle = \langle H \cup K \rangle \)

(minimal group containing both) the JOIN and \(H \cap K \) the MEET of \(H \) and \(K \)
CHAPTER 3

QUOTIENT GROUPS & HOMOMORPHISMS

G a group

Def i. H is a coset subgroup of G and \(g \in G \)
Then \(gH = \{ gh \mid heH \} \)

is the left LEFT COSET of H in G corresponding to \(g \) and

\(Hg = \{ hg \mid heH \} \) is the RIGHT COSET

An element of a (right or left) coset is called a REPRESENTATIVE of that coset

For each \(g \in G \), set

\(gNg^{-1} = \{ gng^{-1} \mid n \in N \} \)

Exercise \(gNg^{-1} \leq G \)

If \(gNg^{-1} = N \) for all \(g \in G \), we say \(N \) is NORMAL in \(G \)
and write \(N \trianglelefteq G \)

If \(H \leq G \) and \(g \in G \), then \(gH \) is the left coset of \(H \) wrt \(g \), and

\(Hg \) the right coset.

If \(gNg^{-1} = N \) for any \(g \in G \), then \(N \) is a normal subgroup of \(G \).
Lemma
A subgroup \(N \) is normal in \(G \) \(\iff \) \(gN = Ng \) for all \(g \in G \)

\[\iff \]

Proof
\(\Rightarrow \) for all \(g \in G \)
\[gN = g(g^{-1}Ng) = \{ gg^{-1}n \mid n \in N \} = Ng \]

\(\Leftarrow \) so \(gNg^{-1} = N \)
\[gNg^{-1} = \{ hg^{-1} \mid h \in gN \} \]
\[= \{ hg^{-1} \mid h \in Ng \} \]
\[= \{ nng^{-1} \mid n \in N \} \]
\[= N \]

Lemma
\(N \leq G \). Then \(N \trianglelefteq G \) \(\iff \) \(gNg^{-1} \subseteq N \) for all \(g \in G \)

Proof
\(\Leftarrow \) immediate
\[gNg^{-1} \subseteq N \text{ for all } g \in G \text{ if also holds } g^{-1}Ng \subseteq N \text{ for all } g \in G \]
\[\Rightarrow (gg^{-1})N(gg^{-1}) = g(g^{-1}N)g^{-1} \subseteq g^{-1}Ng \subseteq N \]
\[\Rightarrow gNg^{-1} \subseteq N \]

We have two equivalent conditions for normality:
\[\forall g \in G \quad gN = Ng \]
\[gNg^{-1} \subseteq N \]
Lemma \(\forall N \leq G \) Then

\[(gN)(hN) = \{ gnhn' \mid n, n' \in N \} \]

= \((gh)N \)

conversely \(\forall N \leq H \leq G \) if \(\forall a,b \in G \)

(aH \times bH) = (ab)H \quad \text{then} \quad H \leq G

if \(gNg^{-1} \subseteq (gN)(g^{-1}N) \)

\[\subseteq (gg^{-1}) \]

If for all \(g, h \in G \) then

\[(gN \times hN) = \{ gnhn' \mid n, n' \in N \} \]

= \(\{ n(gh)n' \mid n, n' \in N \} \)

= \(\{ (gh)nN' \mid n, n' \in N \} \)

= \(\{ (gh)n \mid n \in N \} \)

= \((gh)N \)

for converse, assume \(H \) has property \((aH \times bH) = (ab)H \)

for all \(a, b \in G \) then for all \(g \in G \)

\[gNg^{-1} \subseteq (gN)(g^{-1}N) = (gg')N = N \]
\[a \quad \textit{a fortiori} \]

\[a = x^{-1} \delta(x) \]