Problem #11872. Proposed by Phu Cuong Le Van, College of Education, Hue, Vietnam. Let \(f \) be a continuous function from \([0, 1]\) to \(\mathbb{R} \) such that \(\int_0^1 f(x)dx = 0 \). Prove that for each positive integer there exists \(c \in (0, 1) \) such that

\[
 n \int_0^c f(x)dx = c^{n+1}f(c).
\]

Proof. Solution by Tewodros Amdeberhan, Tulane University, USA. First, we show that if \(g : [0, b] \to \mathbb{R} \) is continuous and \(\int_b^0 g(x)dx = 0 \) then \(\int_0^b xg(x)dx = 0 \) for some \(c \in (0, b) \). Suppose not. Since \(A(t) := \int_0^t xg(x)dx \) is continuous, either \(A(t) > 0 \) or \(A(t) < 0 \) for all \(t \in (0, b) \). WLOG assume \(A(t) > 0 \). Denote \(B(t) = \int_0^t g(x)dx \). Writing \(xg(x) = (xB(x))' - B(x) = B(x) + xg(x) - B(x) \), we obtain \(A(t) = tB(t) - \int_0^t B(x)dx > 0 \) for all \(t \in (0, b) \). By a limiting process, \(bB(b) - \int_0^b B(x)dx \geq 0 \) or \(\int_0^b B(x)dx \leq 0 \) (since \(B(b) = 0 \)). Define \(h : [0, b] \to \mathbb{R} \) continuous, and differentiable in \((0, b)\), by

\[
h(t) = \begin{cases} \frac{1}{t} \int_0^t B(x)dx & \text{if } t \neq 0 \\ 0 & \text{if } t = 0. \end{cases}
\]

Then, \(h'(t) = \frac{1}{t^2}(tB(t) - \int_0^t B(x)dx) > 0 \) throughout \((0, b)\) (see above). By the Mean Value Theorem, \(h(b) - h(0) = h'(a)(b - 0) > 0 \) for some \(a \in (0, b) \). It follows that \(h(b) = \frac{1}{b} \int_0^b B(x)dx > 0 \), which is a contradiction. Therefore, there exists \(c \in (0, b) \) such that \(A(c) = \int_0^c xg(x)dx = 0 \).

Apply this result to \(g(x) = f(x) \) (with \(b = 1 \)) to get \(\int_0^1 xf(x)dx = 0 \), then to \(g(x) = xf(x) \) (with \(b = c_1 \)) to obtain \(\int_0^{c_1} x^2f(x)dx = 0 \), and so on. Hence \(\int_0^{c_n} f(x)dx = 0 \) for some \(c_n \in (0, 1) \). Let

\[
E(t) = \begin{cases} \frac{1}{t^n} \int_0^t x^n f(x)dx & \text{if } t \neq 0 \\ 0 & \text{if } t = 0. \end{cases}
\]

The function \(E \) is continuous on \([0, c_n]\), differentiable in \((0, c_n)\) and \(E(0) = E(c_n) = 0 \). By Rolle’s Theorem, there exists \(\eta_n \in (0, c_n) \) such that \(0 = E'(\eta_n) = \frac{n}{\eta_n^{n+1}} \int_0^{\eta_n} x^n f(x)dx + f(\eta_n) \). That means,

\[
n \int_0^{\eta_n} x^n f(x)dx = \eta_n^{n+1}f(\eta_n). \]

\(\square \).

Typeset by \LaTeX