Problem #11843. Proposed by Mihali Bencze, Bucharest, Romania. Let \(n \) and \(k \) be positive integers, and let \(x_j \geq 1 \) for \(1 \leq j \leq n \). Let \(y = \prod_{i=1}^{n} x_i \). Show that

\[
\sum_{i=1}^{n} \frac{1}{1 + x_i} \geq \sum_{j=1}^{n} \frac{1}{1 + (x_j^{k-1} y)^{1/(n+k-1)}}.
\]

Proof. Solution by Tewodros Amdeberhan, Tulane University, USA. Recall Jensen’s inequality for convex functions: \(f \left(\sum_{i=1}^{n} \lambda_i a_i \right) \geq \sum_{i=1}^{n} \lambda_i f(a_i) \) for positive numbers \(\lambda_j \). The function \(f(x) = \frac{1}{1+e^x} \) is convex since \(f''(x) = e^x(1+e^x)^2 > 0 \) whenever \(x \in (0, \infty) \). Denote \(\lambda = (\lambda_1, \ldots, \lambda_n) \). Apply Jensen’s inequality to \(f \) repeatedly \(n \) times: for \(\lambda = (k, 1, 1, \ldots, 1) \); for \(\lambda = (1, k, 1, \ldots, 1) \); and so on, until \(\lambda = (1, 1, 1, \ldots, k) \). In all cases, \(\sum_i \lambda_i = n + k - 1 \). These lead to a system of \(n \) inequalities; for wit, the first and the last inequalities appear respectively as

\[
\frac{1}{n+k-1} \left[\frac{k}{1+e^{a_1}} + \frac{1}{1+e^{a_2}} + \cdots + \frac{1}{1+e^{a_n}} \right] \geq \frac{1}{1+e^{\frac{a_1+\cdots+a_n}{n+k-1}}},
\]

\[
\frac{1}{n+k-1} \left[\frac{1}{1+e^{a_1}} + \frac{1}{1+e^{a_2}} + \cdots + \frac{k}{1+e^{a_n}} \right] \geq \frac{1}{1+e^{\frac{a_1+\cdots+a_n}{n+k-1}}}.
\]

Adding all \(n \) inequalities produces

\[
\sum_{i=1}^{n} \frac{1}{1+e^{a_i}} \geq \sum_{j=1}^{n} \frac{1}{1 + (e^{(k-1)a_j} a_{j+1} + \cdots + a_n)^{1/(n+k-1)}}.
\]

Now replace \(x_i = e^{a_i} \geq 1 \). The proof is complete. □

Typeset by \LaTeX\