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NUMERICAL SOLUTION OF SINGULAR LYAPUNOV EQUATIONS!

ERIC KING-WAH CHU   , DANIEL B. SZYLD à, AND JIEYONG ZHOU ¤

Abstract. We consider the numerical solution of large scale singular (continuous time) Lyapunov equations of
the form AX + XA ! + BB ! = 0, where A is semi-stable, i.e., its spectrum is contained in the left half plane, with
the exception of a few semi-simple eigenvalues at zero. We also consider the case of a few semi-simple eigenvalues
on the imaginary axis. We assume that we know these few eigenvalues (zero or imaginary), and that we have
or can compute the corresponding invariant subspaces. We use this information to build an appropriate newly
proposed subspace on which to project the Lyapunov equations, and then compute a low-rank approximation to
the least squares solution. Selected illustrative numerical examples are provided.

Key words. Krylov subspace, least squares solution, Lyapunov equation, projection method, singular equa-
tion, Stein equation, Sylvester equation

AMS subject classiÞcations. 15A06, 65F10, 65F30

1. Introduction. We are interested in the solution of the singular (continuous time) Lya-
punov equation (sLE):

AX + XA " + BB " = 0 , (1.1)

where A ! Rn # n is large, sparse and semi-stable, andB ! Rn # p is full rank with p " n. A
matrix A is called stable if its eigenvalues, denoted by! (A), lie on the open left half complex
plane C$ , i.e., if Re(! (A)) < 0; it is called Lyapunov-stable if its eigenvalues lie in the closed half
complex planeC$ # iR, and it is called semi-stable if most of its eigenvalues lie onC$ , except
for a few semi-simple eigenvalues at zero. Semi-simple eigenvalues, also called non-degenerate
eigenvalues, are those with identical algebraic and geometric multiplicities. We are interested in
a low-rank approximation to the solution X of (1.1); in other words, we are seekingZ ! Rn # q

such that X $ ZZ " with its rank q " n. We assume that we know these few eigenvalues (zero
or imaginary), and that we have or can compute the corresponding invariant subspaces.

It is well known that the Lyapunov operator L (·) = A(·) + ( ·)A" is nonsingular if A is
stable. We shall consider the more general situation when eitherA is Lyapunov stable or semi-
stable, making L singular without any eigenvalue ! (A) crossing over into the open right half
plane. We are mainly concerned with the case of whenA is semi-stable, although most results
carry through to the Lyapunov-stable case. We do not treat explicitly the case of degenerate
eigenvalues (with nontrivial Jordan blocks) but our results can be used in this case as well after
appropriate modiÞcations.

Semi-stable matrices play an important role when analyzing autonomous systems [8], matrix
second-order systems [3] which is related to modeling vibration [27, Chapter 4], and certain
nonlinear systems [4, 5]. In the last few years, a theory for optimal semi-stable control theory for
linear and nonlinear dynamical systems was developed [20, 23, 35], and applied to several systems.
These include systems with a continuum of equilibria and have many applications in mechanical
systems having rigid body modes, chemical reaction systems [17], compartmental systems [18,
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19], isospectral matrix dynamical systems and dynamical network systems [25, 26, 40]. They
cover a broad spectrum of applications including cooperative control of unmanned air vehicles,
autonomous underwater vehicles, distributed sensor networks, air and ground transportation
systems, swarms of air and space vehicle formations and congestion control in communication
networks.

When A is stable (thus the Lyapunov operator is nonsingular) andn is small, the well-known
direct method by Bartels and Stewart [1] for Sylvester equations can be applied to (1.1). The
literature for the case of large and sparse matrices is vast; see, e.g., the recent survey of methods
for matrix equations, including Lyapunov equations [46] and references therein. See also further
below for a few selected references. One of the most successful approaches consists of projecting
the equation onto a smaller subspace, use the above mentioned Bartels and Stewart method for
the small equation, thus obtaining the coordinates of the approximation in the subspace.

More precisely, consider the matrixVk ! Rn # ⌫k whose" k columns form an orthonormal basis
of the appropriate subspaceSk to be used for the projection. Let X k = Vk Yk V "

k be a low-rank
approximation to the solution of (1.1) with Yk ! R⌫k # ⌫k . The corresponding residual is

Rk = AX k + X k A" + BB " . (1.2)

If we impose a Galerkin condition which here isV T
k Rk Vk = 0, one obtains the lower order

projected Lyapunov equation

Ak Yk + Yk A"
k + Bk B "

k = 0 , (1.3)

with Ak % V "
k AVk and Bk % V "

k B .
Saad was the Þrst to propose such a Galerkin projection method [42, 43] using forSk a block

Krylov subspaceKk (A, B ) = R ([B, AB, A 2B, . . . , A k$ 1B ]), where R(·) denotes the range. For
a general treatment of block Krylov subspaces, see the survey [16], and references therein1. In
[29, 33], a di! erent block Krylov subspace was used forSk .

Simoncini [44, 33] proposed to use instead an extended Krylov subspace of the formSk =
Kk (A, B ) + Kk (A$ 1, A$ 1B ), and it is shown numerically that this approach produces approx-
imations to the solutions of (1.1) e" ciently. In [11], the rational Krylov subspace (RKS) was
employed in the projection method; see also [10]. While the projection with extended Krylov is
often cheaper, the use of the RKS is superior to the extended Krylov subspace when, for instance,
the Þeld of values ofA is very close to the imaginary axis [45]. In most nonsingular cases, pro-
jection with an extended or a rational Krylov subspace is expected to be e! ective. In all cases, a
low-rank approximation X k = Zk Z "

k with Zk ! Rn # q (q " n) is obtained.
Other approaches include the use of the ADI method; see, e.g., [2, 41]. In [36] a minimal

residual solution in the spaceR(Vk ) is considered. We explore this alternative in Section 5
(Algorithm 5.2), where the projected singular Lyapunov equation (1.3) is solved in the minimal
residual sense.

In the case of a semi-stableA, (symmetric) solutions to the Lyapunov equation (1.1) exist
under certain conditions, and the least squares solution is related to theH2 optimal solution;
see [20, 24].

When considering numerical methods for the singular case, there are very few options. What
we propose here for the numerical solution of the Lyapunov equation (1.1) whenA is semi-stable
(or Lyapunov-stable) is to use Galerkin projection as described above, with a newly proposed
subspaceSk . Our inspiration for this subspace derives from interpreting the approximate solution
X k as the sum of four components, as we describe in the following.

1We also mention the recent paper [13], where a general view of block Krylov methods is presented.
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Let #= dim( N (A)), the dimension of the null space ofA, which is relatively small, i.e., # " n.
Let

N (A) = R(P1) with P1 ! Rn # ` and P = [ P1, P2] being orthogonal. (1.4)

Thus, at least in theory, the space can be partitioned into two parts, and we can decouple the
solution X into the corresponding four parts. With X ij = Pi XP "

j (i, j = 1 , 2), the solution to
(1.1) can then be written as

X = P1X 11P"
1 + P1X 12P"

2 + P2X "
12P"

1 + P2X 22P"
2 , (1.5)

where X 11 and X 22 are symmetric. As # " n, the parts on the right-hand-side of (1.5) involving
X 11 and X 12 are low-rank. We shall show later that X 22 satisÞes a Lyapunov equation deÞned
by a stable matrix with a low-rank constant term. This implies that, although X 22 is in general
full rank, it can usually be approximated by a low-rank matrix. Thus, the overall solution X can
be approximated by a low-rank matrix ZZ " with Z ! Rn # q (q " n). We assume throughout
that we know the number of eigenvalues at zero, and/or the eigenvalues along the imaginary axis
and that we can compute the projectionP1; see examples of such computation in Section 7.

While our proposed numerical method based on this decomposition and the subspace we
present does not solve the singular systems in all situations, we show how the method can be
used successfully in many practical cases. In those cases, we provide both computational details
and illustrative numerical examples.

The paper is organized as follows. In Section 2 we present an appropriate subspace for
Galerkin projection. This subspace is informed by the form of the solution. In Section 3 the
projected equation is considered, and it is shown that it is equivalent to three equations, two of
which are nonsingular, and a third is solved in the least square sense. In Section 4 we make some
comments on the stability of the matrices in the projected equations, while in Section 5 we detail
the proposed algorithm, and comment on possible alternatives. We make some remarks on the
solution of the singular Stein equation&X + AXA " + BB " = 0 in Section 6. Some illustrative
numerical examples are presented in Section 7, and we conclude in Section 8.

For notation, ' · ' indicates the matrix norm induced by the Euclidean vector 2-norm, while
' · ' F corresponds to the Frobenius norm, and# (·) denotes the spectrum.

2. Choice of the Krylov Subspace. In this section, we propose the subspaceSk for the
Galerkin projection of the singular Lyapunov equation (1.1). To motivate such space, we begin
by considering again (1.4), and then, we can write

A = P
!

$ A12

0 A22

"
P" , (2.1)

where A22 = P"
2 AP2 is stable (with all eigenvalues in C$ ), and thus invertible, and $ ! R`# `

(# " n) has only semi-simple eigenvalues on the imaginary axis. Note that the decomposition in
(2.1) for a given A is totally determined by P1. When $ and A22 are in Schur form, which is not
essential in the paper, then (2.1) is the Schur decomposition ofA.

The following result helps us motivate the choice of our subspaceSk .
Theorem 2.1 ( Singular Lyapunov Equations). Given P = [ P1, P2], one can write A as

in (2.1). Then, the solution of the (consistent) sLE (1.1), once partitioned into its four compo-

nents as in (1.5), satisfies the following system of three equations:

$ X 11 + X 11$ " + A12X "
12 + X 12A"

12 + B1B "
1 = 0 , (2.2a)

$ X 12 + X 12A"
22 + A12X 22 + B1B "

2 = 0 , (2.2b)

A22X 22 + X 22A"
22 + B2B "

2 = 0 , (2.2c)
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where X ij % P"
i XP j and Bi % P"

i B , i, j = 1 , 2.
Proof. Pre- and post-multiply the Lyapunov equation (1.1) by P" and P respectively,

and denoting #X % P" XP =
!

X 11 X 12

X "
12 X 22

"
where X 11 and X 22 are symmetric and P" B =

[B "
1 , B "

2 ]" , we obtain the equivalent equation

!
$ A12

0 A22

"
#X + #X

!
$ " 0
A"

12 A"
22

"
+

!
B1

B2

"
[B "

1 , B "
2 ] = 0 ,

which is equivalent to (2.2). !

Remark 2.1. This theorem assumes that we have a solution to the singular Lyapunov
equation, and therefore, the equation must be consistent. As we mentioned, we use this theorem
to inform us on the structure of the solution. Nevertheless, one could consider using this result
as a solution method. We do so in Section 5. As illustrated in our numerical experiments, this
approach is not advisable.

We are ready to identify the appropriate subspace to be used in conjunction with a projection
method.

From (1.5), (2.2b) and (2.2c), it follows that X is spanned by the columns ofP1 ! Rn # `,
P2X 22 ! Rn # (n $ `) , and P2X "

12 ! Rn # `. This indicates that any space where we would look for
the solution must include R(P1). Next, observe that sinceX 22 is the solution of the Lyapunov
equation (2.2c), we can thus consider approximating it in the Krylov subspaceKk (A22, B2) =
Kk (P "

2 AP2, P"
2 B ). Therefore P2X 22 can be approximated by elements inP2Kk (A22, B2) =

Kk (P2P"
2 A, P2P"

2 B ). SinceX 12 is the solution of the Lyapunov equation (2.2b), it is also sensible
to approximate X 12 by the same space asX 22, namely Kk (A22, B2); see, e.g., [46].

Let V0 be the n( (#+ p) matrix with orthonormal columns spanning R([P1, B ]), e.g., obtained
computing the QR factorization of [P1, B ]. As a consequence of the discussion in the previous
paragraph, and using the fact that P1P"

1 + P2P"
2 = I , we aim to approximate the overall solution

X as in (1.5) in the following space.

Sk = R(P1) + Kk (P2P"
2 A, P2P"

2 B )

= R(P1) + R([P2P"
2 B, (P2P"

2 A)P2P"
2 B, · · · , (P2P"

2 A)m $ 1P2P"
2 B ])

= R(P1) + P2P"
2 · R([B, (AP2P"

2 )B, · · · , (AP2P"
2 )m $ 1B ])

= R(P1) + P2P"
2 · Kk (AP2P"

2 , B )

= R(P1) + ( P1P"
1 + P2P"

2 ) · Kk (AP2P"
2 , B )

= R(P1) + Kk (AP2P"
2 , B ) = Kk (AP2P"

2 , V0), (2.3)

where the third to last equality follows from the fact that P1P"
1 · Kk (AP2P"

2 , B ) ) R(P1).
Some comments on this spaceSk are in order. We may compute its basis using any of

the representations in (2.3), depending on the particular structures in our sLE. Also, as already
mentioned, we do not need to explicitly computeP2, in fact, we can use the identity P2P"

2 =
I & P1P"

1 and compute the products with P1. Lastly, we point out that spaces such as (2.3) are
often referred to as augmented Krylov subspaces, since the basis of the space is augmented with
the additional columns of P1; see, e.g., [47, 14] and references given therein.

We also observe that in the semi-stable case, when$ = 0, we have AP1 = 0, A =
A(P1P"

1 + P2P"
2 ) = AP2P"

2 and

Sk = R(P1) + Kk (A, B ) = Kk (A, V0), (2.4)
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the regular block Krylov subspace, augmented withR(P1). Furthermore, when A is stable, P1 is
vacuous and the subspace in (2.3) reduces toKk (A, B ), so that the use ofSk as discussed above
can be considered a true generalization of the standard case as originally proposed by Saad [43].

As is customary, we build an orthonormal basis ofSk with the Arnoldi process. At the kth
step we haveVk ! Rn # ⌫k whose columns spanSk . With V0 spanning R{[P1, B ]} as previously
described, the (block) Arnoldi process buildsVk and we obtain the (block) Arnoldi relation

AVk = Vk $Hk + $vk+1 $r "
k , (2.5)

whereV "
k $vk+1 = 0, and $vk+1 $r "

k corresponds to the part of the range ofAVk orthogonal to R(Vk ).
We remark here that the identities in (2.3), like all formulas developed in this paper, are

only valid in exact arithmetic. In our numerical experiments, though, we have not observed any
deterioration of our results due to round-o! errors.

We also mention that, as with any block Krylov subspace method, generatingSk by (2.3)
may produce some linearly dependent columns. Deßation techniques have been successfully im-
plemented to remedy this situation; see, e.g., [16].

3. The Projected singular Lyapunov equation. Once we have the appropriate subspace
for the projection, and an orthogonal basis for it, which are the columns of the matrixVk , the
next step is to consider the solution of the small singular Lyapunov equation (1.3).

The Þrst comment is that we would assume that the small sLE (1.3) is inconsistent, and we
will solve it in the least square sense, obtaining the unique minimum norm least square solution.
Note that even if the original system (1.1) is consistent, the projected system (1.3) may not be. We
thus need to orthogonally project the term Bk B "

k onto the range of the Lyapunov operator. We do
this by computing the projection onto the range of this operator, or what is the same, substracting
the projection onto the null space of the adjoint Lyapunov operator L !

k (·) = A"
k (·) + ( ·)Ak .

To that end, we Þrst compute the eigenvectors ofA"
k corresponding to the eigenvalues in the

imaginary axis. Since we have thatVk = [ P1, ÷Vk ], for some #Vk , we can write.

Ak % V "
k AVk =

%
$ #A12

0 #A22

&

, Yk =

%
#X 11 #X 12
#X "

12
#X 22

&

. (3.1)

Observe that the matrix $ here is the same as in (2.1). This follows from the fact that
R(P1) * R(Vk ).

Next we assume without loss of generality that$ =
!

0 $
&$ 0

"
. Thus, it has a pair of

purely imaginary eigenvalues±i $. Let the corresponding eigenvectors ofA"
k be a± ib. Using the

Kronecker product formulation of L !
k , the null space of I + A"

k + A"
k + I can be veriÞed to be

R([p1, p2]), with p1 % a + a + b+ b and p2 % a + b& b+ a. The projection of the constant term
in (1.3) then equals

'
1

' p1' 2 p1p"
1 +

1
' p2' 2 p2p"

2

(
v(Bk B "

k ),

where v(·) stacks the columns of the argument matrix. Reversing thev(·) operation, we have the
the projection of the constant term in (1.3) is

I %
a" Bk B "

k a + b" Bk B "
k b

' a' 4' b' 4 & 2(a" b)2 (aa" + bb" ).

With the columns of Z = [ a, b] orthonormalized (and thus maintaining the same range) the
projected term then simpliÞes to

I = trace( Z " Bk B "
k Z ) · ZZ " = ùBk ùB "

k ,
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with ùBk %
)

trace(Z " Bk B "
k Z ) Z . When $ has a single zero eigenvalue,Z then has only one

column and ùBk reduces to ZZ " Bk . An analogous ùBk for a general combination of zero and
purely imaginary eigenvalues can be formed in a similar fashion, from the eigenvectors ofA"

k
corresponding to the eigenvalues of$ .

Thus, that the minimum norm least squares solution of (1.3), is the solution of the (small)
consistent singular (projected) Lyapunov equation

Ak Yk + Yk A"
k + Bk B "

k & ùBk ùB "
k = 0 . (3.2)

We state and prove a result analogous to Theorem 2.1, but for the consistent Lyapunov equation,
such as (3.2). The important di! erence, is that in this case, the two systems are equivalent, and
thus, the result provides a solution method for the (consistent) singular Lyapunov equation.

Theorem 3.1. Consider the partition given in (3.1), and assume that

÷A22 is stable. Then,

the solution of the consistent singular Lyapunov equation (3.2) is equivalent to the following

consistent system of three equations:

$ #X 11 + #X 11$ " + #A12 #X "
12 + #X 12 #A"

12 + B1B "
1 & ùB1 ùB "

1 = 0 , (3.3a)

$ #X 12 + #X 12 #A"
22 + #A12 #X 22 + B1 #B "

2 & ùB1 ùB "
2 = 0 , (3.3b)

#A22 #X 22 + #X 22 #A"
22 + #B2 #B "

2 & ùB2 ùB "
2 = 0 , (3.3c)

where Bk = V "
k B = [ B "

1 , #B "
2 ]" and

ùBk = [ ùB "
1 , ùB "

2 ]" . Consequently,

÷X 22 and

÷X 12 can be uniquely

determined by the Lyapunov equation (3.3c) and the Sylvester equation (3.3b), respectively. If

÷X 11 is the least squares solution to (3.3a), then Yk as in (3.1) is the least squares solution to (1.3)
in Frobenius norm.

Proof. The fact that the solution of (3.2), written as in (3.1) solves the three equations (3.3)
follows in the same way as in the proof of Theorem 2.1. For the converse, (3.3c) is a Lyapunov
equation with ÷A22 being stable, possessing a unique symmetric positive semideÞnite solution÷X 22.
In turn, as # ($ ) , # (& ÷A22) = - , (3.3b) is a uniquely solvable Sylvester equation in ÷X 12. This
leaves the small sLE (3.3a) which is consistent in÷X 11. From ' Yk ' 2

F =
*

i,j ' ÷X ij ' 2
F with ÷X 22,

÷X 12 and ÷X 21 = X "
12 uniquely determined and ÷X 11 being the minimal norm least squares solution

of (3.3a), then Yk is the solution of the consistent equation (3.2), and therefore, it is the solution
to (1.3) of the minimal Frobenius norm. !

We now have a road map for our proposed algorithm for the solution of the singular Lya-
punov equation (1.1). We project the equation using the proposed subspaceSk as in (2.3), then
compute the projection onto the range ofL k , and solve the three equations in (3.3) to obtain
a minimium norm least squares solution of the projected equation (1.3), and thus obtaining a
low-rank approximation to (1.1). In Section 5, we present Algorithm 5.1 formalizing our proposal.
But before we do so, in the next section, we describe how we estimate the residual norm, to help
in our stopping criteria.

4. Bounds on the Residuals and Stability Properties. In this section we present an
a posteriori bound on the norm of the residual (1.2), and on other issues of convergence of the
methods described in the previous sections. In particular we address the question of whether#A22

is stable if A22 is.
We present a result similar to [45, Proposition 5.1], which applies to our singular case.
Proposition 4.1. Consider a projection method defined by a matrix Vk to solve (1.1), with

approximation X k = Vk Y VT
k , and Arnoldi relation (2.5). Let Rk be the residual (1.2), and let

#Rk is the minimum residual in (3.3a). Then,

' Rk ' . ' #Rk ' + ' Yk $r k ' , ' Rk ' 2
F = ' #Rk ' 2

F + 2 ' Yk $r k ' 2
F . (4.1)
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Proof. Let Q1 % Vk and extend it to an orthogonal matrix Q = [ Q1, Q2] ! Rn # n . From (2.5)
and the fact that R(B ) ) R(Q1), we have

Q"
2 (AX k + X k A" + BB " ) = Q"

2 (AQ1Yk Q"
1 + Q1Yk Q"

1 A" )

= Q"
2 (Q1 $H "

k + $vk+1 $r "
k )Yk Q"

1 = Q"
2 $vk+1 $r "

k Yk Q"
1 .

We then have the residual

Rk = QQ" (AX k + X k A" + BB " )QQ" = Q
!

#Rk Yk $r k $v"
k+1 Q2

Q"
2 $vk+1 $r "

k Yk 0

"
Q" ,

from which we obtain (4.1). !

With a ÒgoodÓ subspace spanned byVk , we expect #Rk to be relatively small. We can interpret
the results in (4.1) as ' Yk $r k ' being the additional amount of residual created by the Krylov
subspace method. In general, we do not know when' Yk $r k ' is small.

4.1. Stability of the projected matrix. As we mentioned earlier, we solve the projected
sLE (1.3) using the reformulation (3.3).

With $ possessing zero and purely imaginary eigenvalues, the solvability of (3.3c) relies
on the stability of #A22, i.e., on whether this matrix is stable. In the rest of this section we
discuss further whether the stability of the matrix A22 = P"

2 AP2 implies the stability of #A22.
From (2.1) and (3.1), we can write #A22 = #V "

k A #Vk = #V "
k P2A22P"

2
#Vk = W "

k A22Wk , where we
deÞneWk = P"

2
#V . SinceR( #Vk ) * R(P2), we have W "

k Wk = #V "
k P2P"

2
#Vk = #V "

k
#Vk = I . We

investigate the e! ect of projection (by Wk ) on the stability of A22, or the distance of its spectrum
from the imaginary axis. An appropriate tool is the stability radius [7, 22, 31, 32, 34, 48], which
is nontrivial to estimate:

%(M ) % min {' E ' : M + E is unstable} = min
!%R

&min (M & ' õI),

where &min is the smallest singular value.

Mirroring the Arnoldi relationship (2.5) for A"
22, let

A"
22Wk = Wk #A"

22 + wk+1 s"
k , (4.2)

where W "
k wk+1 = 0. We have the following theorem on the inheritance of the stability of A22 by

#A22, modifying some techniques in [49, 50].

Theorem 4.2. Let z1 = ÿz1 optimize %( #A22) = min !%R min&z1&=1

+
+
+z"

1 ( #A22 & õ' I )
+
+
+. If

%(A22) > ' ÿz"
1 sk ' , (4.3)

then %( #A22) / %(A22) & ' ÿz"
1 sk ' > 0; i.e., the stability of A22 is inherited by

#A22.
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Proof. Vith [ Wk , ,Wk ] being orthogonal andz = [ z"
1 , z"

2 ]" , we have

%(A22) = %([Wk , ,Wk ]" A22[Wk , ,Wk ]) = %

%
W "

k A22Wk W "
k A22 ,Wk

,W "
k A22Wk ,W "

k A22 ,Wk

&

. min
!%R

min
&z&=1

- +
+
+
+
+
z"

%
#A22 & õ' I 0

,W "
k A22Wk ,W "

k A22 ,Wk & õ' I

&+
+
+
+
+

+ ' z"
1 W "

k A22 ,Wk '

.

. min
!%R

min
&z1&=1

- +
+
+
+
+
[z"

1 , 0]

%
#A22 & õ' I 0

,W "
k A22Wk ,W "

k A22 ,Wk & õ' I

&+
+
+
+
+

+ ' z"
1 W "

k A22 ,Wk '

.

,

= min
!%R

min
&z1&=1

+
+
+z"

1 ( #A22 & õ' I )
+
+
+ + ' z"

1 V "
k A22 ,Wk ' (4.4)

= %( #A22) + ' ÿz"
1 W "

k A22 ,Wk ' , (4.5)

wherez1 = ÿz1 optimizes the Þrst term in (4.4) as assumed. From (4.2),' ÿz"
1 W "

k A22 ,Wk ' = ' ÿz"
1 sk '

and the inequalities (4.3) and (4.5) prove the result. !

A possible interpretation of the bound (4.3) comes from the following heuristic. When #A22 is
an increasingly good model ofA22, in terms of stability for the increasing k, z1 will be dominated
by the components with smaller subscripts. When the Arnoldi residualsk stagnates (otherwise it
will be diminishing), it is usually dominated by components with larger subscripts. Consequently,
' ÿz"

1 sk ' diminishes with increasingk and (4.3) is eventually satisÞed.
If condition (4.3) fails, the stability of A22 does not imply that of #A22, although the latter may

still hold for other reasons, e.g.,A22 is passive i.e., the Þeld of valuesf (A22) % {xH A22x : ' x' 2 =
1, x ! Cn $ `} ) C$ , where X H stands for the complex conjugate ofx. Di! erent scenarios occur,
with A22 being passive but violating (4.3), and vice versa; see some examples in our numerical
experiments in Section 7, where we use the techniques in [30] to compute the Þeld of values.

Remark 4.1 ( Solvability of Projected Equations). Apart from the additional assumptions
on A22 in Theorem 4.1, there may well be other circumstances under which (3.3c) is solvable.
In the literature on projection methods, it is generally assumed that either (i) A22 is passive or
(ii) the associated projected equation is solvable; see, e.g., the survey [46], and references therein.
Note that (ii) is much stronger than the stability of A22 and is not easy to test or characterize.
We have made a slight progress in avoiding these assumptions but further research is warranted
on the treatment and solvability of projected equations.

Remark 4.2 ( Special Case). When $ = 0, we have the free variableX 11 = 0 and the least
squares solution for (1.1) has the formX = P1X 12P"

2 + P2X "
12P"

1 + P2X 22P"
2 .

5. Algorithms for large sLEs. We are ready now to formally present our proposed algo-
rithm to Þnd a low-rank approximation to the solution of the singular Lyapunov equation (1.1).
We use the newly proposed spaceSk presented in Section 2, to obtain the projected sLE as in
(1.3), and use the reformulation (3.3). In addition, we use (4.1) to estimate( k = ' Rk ' , the
norm of the residual (1.2). The algorithm below is guaranteed to work as long as the projected
matrix #A22 is stable, though it also works in other cases, as we mentioned in Remark 4.1. See
also Section 7 where this is used for several examples. As mentioned before, we assume that the
projection P1 is given, or it is computed beforehand (as we do in some examples in Section 7).

Algorithm 5.1 ( with stable #A22).
1. For a given k, P1, compute Vk = [ P1, #Vk ] with orthonormal columns which form a basis

of Sk as in (2.3), compute$ = P"
1 AP1, #A12 = P"

1 A #Vk , #A22 = #V "
k A #Vk , B1 = P"

1 B and
#B2 = #V "

k B .
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2. Compute ùBk in (3.2).
3. Solve the Lyapunov equation (3.3c) for #X 22.
4. Solve the Sylvester equation (3.3b) for #X 12.
5. Solve (3.3a) for #X 11 of minimum norm.
6. Estimate ( k = ' Rk ' .
7. If ( k is acceptably small, exit; otherwisek 0 k + 1, increase the dimension ofVk by the

Arnoldi process, with deßation if necessary, and go back to Step 1.
8. The approximate solution X k = Vk Yk V "

k is truncated, by deleting the components ofYk

associated with its singular values less than a given tolerance.

The above algorithm has a computational complexity ofO(n) when A is sparse, dominated
by Step 1. We note that a Þnal truncation is applied in Step 8, which limits further the rank of
the approximate solution X k . Step 8 is applieda posteriori after the growth of the residual norm
( k is judged to be acceptably small in Step 7. This is standard for Lyapunov solvers with Krylov
projection; see, e.g., [33]. The determination of the stability of #A22 is expensive, whether based
on the inequality (4.3) or the passivity of A.

One could consider other alternatives usually associated with nonsingular Lyapunov equa-
tions. We discuss these alternatives in the following remarks.

Remark 5.1. Instead of our proposed subspaceSk , we may use a rational Krylov subspace
directly to the sLE (1.1), as done, e.g., in [10, 11, 45] for nonsingular Lyapunov equations. See
further the numerical experiments with RKS for Example 7.1 in Section 7.

Remark 5.2 ( Minimum Residual Solution). Instead of our proposed solution of the three
equations in (3.3), one could solve the projected equation (1.3) directly in the least squares or
minimum residual sense, e.g., by the QR or SVD factorizations. To that end, one rewrites the
the projected (singular) equation (1.3) utilizing the Kronecker product + to produce

(I + Ak + Ak + I )v(Yk ) = &vBk B "
k ).

The least squares solutionYk minimizes the residual of (1.3), without requiring any further
assumptions onA or A22 as we do when we want to guarantee that the matrix #A22 is stable, as
is the case for Algorithm 5.1. This minimum residual approach is summarized as Algorithm 5.2
below, where steps 2Ð5 in Algorithm 5.1 are replaced with solving (1.3) in the minimum residual
sense. We note however, that without separating or deßating the singular part in (1.3), as
in (3.3a) in Algorithm 5.1, the original sLE and its projection are generally ill-posed. These
problems are generally considered di" cult to solve. In fact, one popular approach is the use of
a regularization technique, such as Tikhonov regularization; see, e.g., [21]. Consequently, simply
obtaining a minimum residual solution using Algorithm 5.2 may not be e" cient. We mention also
that Lin and Simoncini [36] discuss the minimal residual approach we mention in the previous
remark in the case of nonsingular Lyapunov equations, and propose several alternatives to solve
the projected minimal residual problem more e" ciently. See further a numerical experiment in
Section 7, and the comments on this experiment we give there.

Algorithm 5.2.
1. For a given k, P1, and Vk with orthonormal columns forming a basis ofSk as in (2.3),

compute Ak = V "
k AVk and Bk = V "

k B .
2. Solve the projected singular Lyapunov equation (1.3) forYk in the minimum residual

sense.
3. Estimate the norm of the residual contributed by projection ( k % ' Yk $r k ' as in (4.1).
4. If ( k is acceptably small, go to Step 5; otherwisek 0 k + 1, increase the dimension ofVk

by the Arnoldi process, with truncation by the QR process with partial column pivoting,
and go back to Step 1.
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5. The approximate solution X k = Vk Yk V "
k is truncated, by deleting the components ofYk

associated with negligible singular values.

The algorithm has a computational complexity of O(n) when A is sparse, again dominated
by Step 1.

For either algorithm to work, a reasonable accurateP1 is required. In many practical cases,
as illustrated by the numerical examples in Section 7 this is perfectly feasible. We also mention
that, like all iterative methods, if the algorithm takes too many iterations to converge to certain
tolerance, one may run out of memory. A lower accuracy may be achieved by the approximate
solutions for the same memory usage.

Remark 5.3 ( Enlarged Subspaces). We discuss now another alternative, which we pre-
viewed in Remark 2.1. Theorem 2.1 motivates our choice of the subspacesSk assuming the sLE
(1.1) to be consistent. We may enforce the consitency by subtracting the term$B $B " , as con-
structed in the projected sLE (3.2). As a result, the constant term BB " in (1.1) is projected
onto the range ofL and is modiÞed to becomeBB " & $B $B " . This enlarges the subspacesSk , with
B in V0 in (2.3) now augmented to [B, $B ]. From our numerical experiments, the larger subspaces
increase workload and memory requirements, as illustrated in Example 7.1 in Section 7. Also, the
larger subspaces occasionally produce oscillating normalized residualsµk (deÞned in (7.1), which
measures the accuracy of the projection method), as illustrated in Example 7.2.

6. Singular Stein Equations. In this section, we show that we can use an approach very
similar to those presented in Sections 2 and 3 for the solution of the singular Lyapunov equa-
tion (1.1) for the singular semi-stable Stein equation

&X + AXA " + BB " = 0 , (6.1)

with # (A) lying inside the unit circle except for a few semi-simple unimodular eigenvalues. With
A written as in (2.1), we can consider Galerkin projection with the same subspaceSk whose
orthonormal basis are the columns ofVk , and with X k = Vk YK V "

k , Ak = V "
k AVk , and Bk = V "

k B ,
the projected singular Stein equation is

&Yk + Ak Yk A"
k + Bk B "

k = 0 . (6.2)

In a way similar to the development in Section 3 we solve this projected equation in a least squares
sense by Þrst projecting the constant term onto the range of the projected Stein operator. Thus
with the same inconsistent term ùBk ùB "

k as in (3.2) (constructed with the eigenvectorsa ± ib
corresponding to an eigenvalue pair) ± i * of $ on the unit circle), one obtains the consistent
singular Stein equation

&Yk + Ak Yk A"
k + Bk B "

k & ùBk ùB "
k = 0 . (6.3)

Using the same philosophy of Theorem 3.1, we have the following result.
Theorem 6.1 ( Projected Singular Stein Equations). For the matrix A, let the orthogonal

matrix P = [ P1, P2] be such that (2.1) holds. Let Vk = [ P1, #Vk ] be the orthogonal matrix whose

columns span the space Sk . Consider the partitions given in (3.1). Then, the consistent Stein

equation (6.3) is equivalent to

& #X 11 + $ #X 11$ " + #A12 #X "
12$ " + $ #X 12 #A"

12 + #A12 #X 22 #A"
12 + B1B "

1 & ùB1 ùB "
1 = 0 , (6.4a)

& #X 12 + $ #X 12 #A"
22 + #A12 #X 22 #A"

22 + B1 #B "
2 & ùB1 ùB "

2 = 0 , (6.4b)

& #X 22 + #A22 #X 22 #A"
22 + #B2 #B "

2 & ùB2 ùB "
2 = 0 , (6.4c)
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where Bk = V "
k B = [ B "

1 , #B "
2 ]" and

ùBk = [ ùB "
1 , ùB "

2 ]" . Consequently,

#X 22 is uniquely solved

from the nonsingular Stein equation (6.4c), and #X 12 from the nonsingular generalized Sylvester

equation (6.4b). Then (6.4a) is solved in the least squares sense, obtaining

#X 11. The least squares

solution to the sSE (6.2) is Yk , as in (3.1). The residual for (6.2) is ùBk ùB "
k which modifies (6.2)

to be consistent.

Proof. The consistent Stein equation (6.3) is equivalent to

&

%
#X 11 #X 12
#X "

12
#X 22

&

+

%
$ #A12

0 #A22

& %
#X 11 #X 12
#X "

12
#X 22

&!
$ " 0
#A"

12
#A"

22

"

+
!

B1
#B2

"
[B "

1 , #B "
2 ] &

! ùB1
ùB2

"
[ ùB "

1 , ùB "
2 ] = 0 ,

and in turn to (6.4) where ÷A22 is stable (with eigenvalues inside the unit circle for Stein equations)
and $ contains a few semi-simple unimodular eigenvalues. Therefore, (6.4b) and (6.4c) are
nonsingular and the singularity and freedom in (6.3) appears only in (6.4a). !

7. Numerical Examples. We present three numerical experiments illustrating the ap-
proaches presented in Sections 2 and 3 for the solution of the singular Lyapunov equation (1.1).
The Þrst two examples are of ordern = 10000 and n = 10201, respectively. In both cases, we
have $ = 0, i.e., the semi-stable case. In the third example, we haven = 10000 and $ 1= 0 with
two pairs of eigenvalues on the imaginary axis. In addition to reporting on convergence results,
we look at the eigenvalues, or the Þeld of values of the appropriate matrices, and discuss when
the projected matrix ÷A22 maintains the stability property of A22. For Example 7.1, we have also
included some experiments testing the alternative approaches discussed in Remarks 5.1Ð5.3. As
we show, these experiments indicate these alternatives do not appear to be competitive for the
singular case discussed in this paper.

When solving large-scale sLEs by the projection method, except when stated otherwise, we
proceed as in Algorithm 5.1: we solve the projected Lyapunov equation (1.3) as in (3.3), all
in smaller dimensions. Equation (3.3c) and subsequently (3.3b) are solved using the MATLAB
commandlyap [37]. The singular (3.3a) is solved in the least squares sense by applying Kronecker
products and the SVD [15, p. 76].

All numerical experiments have been carried out on a computer with an Intel Core i7-4721HQ
CPU @2.3GHZ, 16GB memory and Windows 10 operating system. For the Krylov subspace
projection method, the tolerance for the truncation in the QR decomposition with column pivoting
is 10$ 10. The numerical rank with the tolerance + = 10$ 16 is denoted by rank", in Step 5 of
Algorithm 5.1.

For the computation of the low-dimensionalR(P1), inverse iteration was applied toA. In our
examples this was obtained without any complications. In general for any$ of a small dimension,
we apply a generalized inverse iteration to the Lyapunov operatorL . As we shall see, even when
A22 or #A22 have eigenvalues near the imaginary axis, our method works accurately. The solution
of the stable Lyapunov equations (3.3c) dominate in terms of execution time.

To verify (4.5) for Examples 7.1 and 7.2, we estimate the stability radii %(A22) and %( #A22)
using the eigenvalue optimization softwareEigopt [38] (with a tolerance for accuracy of 10$ 12),
which implements the methods in [6, 39]. The Þeld of values ofA22 is computed using the
command fov in chebfun [9], which implements the techniques in [30].
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Example 7.1. [28, Example 1] We consider the matrix

A = &

/

0
0
0
0
0
0
0
0
0
1

4 1& , 0 · · · 0 1
1 + , 4 1& , 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0
. . .

. . . 1 & ,
1 0 · · · 0 1 + , 4

2

3
3
3
3
3
3
3
3
3
4

.

with , = 0 .5 and n = 10000, and we force dimN (A) = # by setting the last # rows of A to be
zeros. The entries inB were uniformly distributed on [0, 1]. We compare the spectra# (A) and
# (V "

k AVk ) with #= 1 and k = 21 in Figure 7.1(a). The Þgure shows the stability property of A22

is passed on to #A22. Notice the singularity of A11 at the origin. The spectral plots for # = 3 , 6
show similar behaviour. We did not compute the plot for the Þeld of values ofA22 because of the
large value of n, but the largest eigenvalue of the symmetric part (A22 + A"

22)/ 2 equals 0.0818,
implying that A22 is not passive. We also display PA22 = %(A22), PTA 22 = %( #A22), nz = ' ÿz"

1 sk '
and d = %(A22) & ' ÿz"

1 sk ' for k = 1 , . . . , 30 in Figure 7.1(b). The computation of %(A22) and
%( #A22) (for each k and #) was performed with Eigopt as mentioned above. To verify (4.5) and
(4.3) for stable A22 and #A22, all the displayed quantities have to be positive, and this holds
starting with k = 1. Thus, the stability of A22 passes to #A22 after projection and the projected
Lyapunov equation (3.3c) is uniquely solvable.
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(a) ⇤(A) (blue stars) and ⇤(V !
k AVk) (red circles)
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3.5

4
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22

PTA
22

nz

d

(b) ! (A22 ), ! ( eA22 ), ! ÿz!
1 sk! and ! (A22 ) " ! ÿz!

1 sk!

Fig. 7.1: Example 7.1. Spectra and stability radii

For di ! erent values of dimN (A), rank B , and k = 15, we display in Table 7.1 the correspond-
ing execution time (in seconds) required for the projection method," k (the number of columns
of Vk ), rank"(X k ) and the normalized residual

µk % ( k / (2' A'' Yk ' + ' B ' 2) (7.1)

with ( k % ' Yk $r k ' from (4.1). Recall that the threshold to compute rank"(X k ) is 10$ 16. Of
course larger threshold would produce approximate solutions of smaller rank. The computation
of P1 ! Rn # ` (with #= 1 , 3, 6) which spansN (A) took between 0.0469 sec. and 0.0781 sec.
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dim(N (A)) rank(B ) cputime " k rank"(X k ) µk

1 3 1.31 61 36 3.3 ( 10$ 9

7 1.48 106 73 2.5 ( 10$ 9

11 1.72 177 17 3.9 ( 10$ 9

3 3 1.46 48 40 1.7 ( 10$ 9

7 1.73 108 78 2.9 ( 10$ 9

11 2.22 168 110 7.5 ( 10$ 9

6 3 1.93 51 41 2.9 ( 10$ 9

7 2.15 111 82 4.5 ( 10$ 9

11 2.46 171 113 5.5 ( 10$ 9

Table 7.1: Example 7.1. Projection methods atk = 12

We also present the graphs of the normalized residualµk (NRes) and the normalized actual
residual ' Rk ' / (2' A'' Yk ' + ' B ' 2) (NAR, with Rk from (4.1)) in Figure 7.2 for dim N (A) = 1
and rank(B ) = 3 , 7 and 11. The graphs for di! erent values of rank(B ) are visually identical,
and so are those for dimN (A) = 3 , 6. A tolerance of O(10$ 9) in terms of normalized residual
µk is achieved after 12 iterations. The table and Þgure illustrate the feasibility and e" ciency of
the projection method. There is a discrepancy between" k and rank"(X k ) (for all our numerical
examples). This discrepancy is seemingly smaller for nonsingular Lyapunov equations, possibly
an indication of the di" culty in solving sLEs.
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Fig. 7.2: Example 7.1. Normalized residuals for dim(N (A)) = 1, rank( B ) = 3 , 7 and 11.

As it can be readily observe in Figure 7.2, the actual relative residual reaches a plateau well
before the method reaches tolerance, measured by the computed relative residual. In theory,
we could stop earlier, but of course we do not want to compute the actual residual at every
step. The discrepancy between these two curves (for each case) is due to the ill-conditioning of
the problem. Nevertheless, it is important to note, that with these computations, we achieve
a residual norm, which is comparable to the minimum possible, that is, the norm of $B $B " as
described in Remark 5.3, and we report this in Table 7.2.

We consider now other alternatives to our proposed method, as described in Remarks 5.1Ð5.3.
We present results of three additional experiments. In these experiments, dim(N (A)) = 1 and
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rank(B ) Algor 5.1 Algor 5.2 ' $B $B " '
3 1.70 1.69 1.54
7 2.20 2.21 2.19
11 4.00 4.00 3.91

Table 7.2: Example 7.1. Di! erent ' Rk ' at k = 12

B is chosen randomly with its rank being 3. For any sLE, we apply the Kronecker products to
expand to a singular linear systemMx = f . We obtain the SVD [15, p. 76] M = U1DV "

1 and
constructed the least squares solutionx = V1D $ 1U"

1 f . We ignore any singular values less than
- = 10$ 4&1 in D , in order to avoid misreading the singularity of the Lyapunov operator. The
shifts for the rational Krylov subspaces are chosen as in [41].

In the Þrst of these additional experiments, the RKSs generated byA, as discussed in Re-
mark 5.1, is applied to the sLE (1.1) and the projected equations are solved in the least squares
sense by the SVD as described above. The NARs are at least ofO(103), showing that these
subspaces do not appear to be appropriate for this singular case.

The results of the second of these experiments are summarized on the left of Figure 7.3, the
RKS approach is applied to (1.3), as in Algorithm 5.2 or Remark 3.2. The least squares solution
is realized by the SVD. The CPU time required is approximately 13.02 sec. for 15 iterations,
achieving an accuracy ofO(10$ 9), as compared to less than 2 sec. for Algorithm 5.1. We
note that the plateau in the actual relative residual is lower for Algorithm 5.2 than that for
Algorithm 5.1, but the residual norm is comparable, as reported in Table 7.2.

The results of the third of these experiments are reported on the right of Figure 7.3, the
RKS approach is applied only to (2.2c). This is one of the options considered in [36]. The
projected equation is again solved in the least squares sense with the SVD. A high accuracy in
terms of the NRes to O(10$ 22) is achieved in 9 iterations requiring 95.71 sec. for 9 iterations,
approximately 100 times the CPU time per iteration required by Algorithm 5.1. But, the NAR
for the approximate solution is 854.11, comparing to the correct NAR ofO(10$ 5) in the Þgure
on the left. This illustrates the important point that a small NRes illustrates only small part
of the residual from the Arnoldi process, which may be overwhelmed by the much larger NAR
dominated by the inconsistency of the sLE.

Lastly, for Example 7.1, we repeat the computations in Table 7.1, using the enlarged subspaces
discussed in Remark 5.3, with the results summarized in Table 7.3. A comparison with Table 7.1
reveals that using the enlarged subspaces produces approximations of larger rank, and requires
more computing resources in terms of CPU-time and memory.

Example 7.2. We consider the PDE operator&%u + .a2 u with Neumann boundary condi-
tions. Using the Þnite element method with triangular elements and quadratic basis functions, we
discretize to obtain the matrix A [12, Chapters 3 and 4]. It is well-known that A has a semi-stable
spectrum spreading out from the origin and dim(N (A)) = 1. We experiment with (i) n = 2601
and .a = 1 in 1D and (ii) n = 10201 and .a = (1 , 2) in 2D. We choseB randomly with rank
5, 9 and 11. The%u term dominates thus A is not far from being symmetric and # (A22) * C$

(A22 is stable) but situated close to the origin. We expectA22 in (2.2c) and #A22 in (3.3c) to be
ill-conditioned, with many eigenvalues small in magnitude. This is a good test for our method.

In Figure 7.4, we compare the spectra# (A) and # (V "
k AVk ) (as we did in Figure 7.1(a) for

Example 7.1) for n = 2601 with # = 1 and k = 100 (respectively indicated with blue stars and
red circles). The spectra are not potted in the same graph for more clarity. They are away from
the negative real axis with negligible imaginary parts. Obviously, the gap between# (A22) and
the imaginary axis is so small, that (4.3) is not satisÞed, as indicated by d< 0 in Figure 7.5(a)



Numerical solution of singular Lyapunov equations 15

0 5 10 15

iteration

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

1
0
(n

o
rm

a
liz

e
d

 r
e

si
d

u
a

l)
log

10
(NRes)

log
10

(NAR)

(a) Normalized residuals for Algorithm 5.2

1 2 3 4 5 6 7 8 9
iteration

-25

-20

-15

-10

-5

0

lo
g

10
(n

or
m

al
iz

ed
 p

ro
je

ct
io

n 
re

si
du

al
)

(b) Normalized residuals for RKS on (2.2c)

Fig. 7.3: Example 7.1. Rational Krylov and minimum residual methods

dim(N (A)) rank(B ) cputime " k rank"(X k ) µk

1 3 1.02 91 38 2.6 ( 10$ 9

7 2.23 211 78 5.4 ( 10$ 9

11 3.84 345 118 1.3 ( 10$ 9

3 3 1.71 93 44 1.9 ( 10$ 7

7 2.46 213 84 1.5 ( 10$ 7

11 4.19 333 124 7.5 ( 10$ 8

6 3 1.95 96 47 4.3 ( 10$ 7

7 2.86 216 87 1.4 ( 10$ 7

11 4.49 336 127 1.0 ( 10$ 7

Table 7.3: Example 7.1. Projection methods with enlarged subspaces atk = 12

(with the same symbols as in Figure 7.1(b)). However, the Þeld of values ofA22 in Figure 7.5(b)
with the right vertical tangent just on the left of the origin, given by the maximum eigenvalue of
(A22 + A"

22)/ 2 of &0.31( 10$ 2 and &0.81( 10$ 3 respectively for n = 2601, 10201. This illustrates
that A22 is passive. (Only the Þeld of values ofA22 for n = 2601 is displayed, that of n = 10201
would be too expensive to compute.) This implies the stability of #A22 and the unique solvability
of (3.3c). The graphs forn = 10201 in 2D shows similar behaviour.

We iterate to k = 100, 150 steps respectively forn = 2601, 10201 as summarized in Table 7.4.
Because of its spreading spectrum,#A22 is ill-conditioned and the projection method converges
slowly. Figure 7.6 shows the NRes and NAR respectively forn = 2601, 10201, as in Fig. 7.2 for
Example 7.1. We terminate the iterations as early as possible, with accuracy ofO(10$ 7), just
enough to illustrate the feasibility of our approach. More accurate approximate solutions may be
obtained with larger k. Iterations with a larger rank ( B ) converge in fewer iterations with bigger
Krylov subspaces but require more execution time.

Example 7.3. We construct A from the matrix of Example 7.1 with n = 10000 and , = 0 .5,

except for zeros in the last two rows and columns as well as the diagonal blocks
!

0 )
&) 0

"
for

) = 2 , 3 at the lower right corner. Thus, A has two pairs of pure imaginary eigenvalues±2i



16 Eric King-wah Chu, Daniel B. Szyld, and Jieyong Zhou

-8 -7 -6 -5 -4 -3 -2 -1 0
-4

-3

-2

-1

0

1

2

3

4
10-3

(a) ⇤(A22 )

-8 -7 -6 -5 -4 -3 -2 -1 0
-4

-3

-2

-1

0

1

2

3

4
10-3

(b) ⇤( eA22 )

Fig. 7.4: Example 7.2. Spectra

0 20 40 60 80 100
-3

-2

-1

0

1

2

3

4

PA
22

PTA
22

nz

d

(a) ! (A22 ), ! ( eA22 ), ! ÿz!
1 sk! and ! (A22 ) " ! ÿz!

1 sk!

-8 -7 -6 -5 -4 -3 -2 -1 0 1
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(b) Field of Values and Spectrum of A22

Fig. 7.5: Example 7.2. Stability radii, Þeld of values and spectrum

n rank(B ) cputime " k rank"(X k ) µk

2601 5 20.94 501 89 1.3 ( 10$ 7

9 54.79 901 135 1.1 ( 10$ 8

11 83.57 1101 156 9.6 ( 10$ 9

10201 5 94.45 906 98 7.5 ( 10$ 8

9 271.29 1510 153 1.9 ( 10$ 8

11 425.81 1812 178 1.4 ( 10$ 9

Table 7.4: Example 7.2. Projection methods at (n, k) = (2601, 100) and (10201, 150)

and ±3i , in addition to the other stable eigenvalues. The elements in the matrixB ! R10000# p

(p = 3 , 7, 11) are uniformly distributed in (0,1). The spectra # (A) and # ( #A22) are shown in
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Fig. 7.6: Example 7.2. Normalized residuals

Figure 7.7(a) similar to Figure 7.1(a) for Example 7.1; only the p = 3 case was shown for the
latter and the other cases are similar. The stability of #A22, required to be stable for Algorithm 5.1,
is secured because the conditions in Theorem 4.2 are satisÞed. This is illustrated in Figure 7.7(b),
similar to Figure 7.1(b) for Example 7.1. Algorithm 5.1 was applied, achieving NRes =O(10$ 11)
with NAR = O(10$ 5) as shown in Fig. 7.7 and Table 7.5, in 15 iterations and less than 10 sec. of
execution time. This indicates that the equations in (3.3) are solved e" ciently and accurately.
In Fig. 7.8, NResp and NARp indicate respectively the NRes and NAR for the particular value
of p. The normalized projection error in NRes accounts for a small part of the normalized actual
residual NAR.

rank(B ) cputime " k rank(X k ) µk

3 4.50 210 34 1.8 ( 10$ 18

7 6.30 330 67 5.1 ( 10$ 18

11 10.00 450 103 5.6 ( 10$ 18

Table 7.5: Example 7.2. Projection methods at (n, k) = (2601, 100) and (10201, 150)

8. Conclusions. We have analyzed singular Lyapunov and Stein equations. We have pro-
posed appropriate subspaces to be used in Galerkin projection. The projected equations can be
decoupled into a singular part, and two uniquely solvable equations, from which the least squares
solutions can be derived. Illustrative numerical examples of sLEs have been presented indicating
the e! ectiveness of the proposed method.
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Fig. 7.7: Example 7.3. Spectra and spectral radii
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