1. Consider the subspaces U and W of $V = \mathcal{P}_3(\mathbb{R})$, defined by

\[U = \{ a(t+1)^2 + b \mid a, b \in \mathbb{R} \} \quad \text{and} \quad W = \{ a + bt + (a+b)t^2 + (a-b)t^3 \mid a, b \in \mathbb{R} \}. \]

(i) Show that $V = U \oplus W$.

(ii) Find a basis for U^\perp, for some appropriate inner product.

2. On $V = \mathbb{R}^3$ we consider the inner product $\langle \cdot, \cdot \rangle$ defined by

\[\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = x_1x_2 + 2y_1y_2 + 3z_1z_2, \]

for all (x_1, y_1, z_1) and (x_2, y_2, z_2) in V. Let $u = (1, 2, -1)$ and $v = (3, -2, 0)$.

(i) Compute $\langle u, v \rangle$, $\|u\|$, $\|v\|$ and the “cosine” of the “angle” between u and v.

(ii) Find a basis for u^\perp.

3. Using the Schmidt orthonormalization process, change the \mathbb{R}^3-basis

\[B = \{ v_1 = (1, 0, 1), v_2 = (0, 1, 1), v_3 = (1, 1, 0) \} \]

into an orthonormal one $\mathcal{C} = \{ w_1, w_2, w_3 \}$. Write the vector $u = (1, -2, 7)$ as a linear combination of elements in \mathcal{C}.

In addition, do exercises 21 and 22 from Axlers' book (p. 124).