Abstract. An RA loop is a loop whose loop rings in characteristic different two are alternative. In this paper, we characterize Moufang loops with a unique non-identity commutator which are not associative but in which all proper subloops are associative. Surprisingly, these turn out be nearly RA.

MINIMALLY NONASSOCIATIVE MOUFANG LOOPS WITH A UNIQUE NONIDENTITY COMMUTATOR ARE NEARLY RA

ORIN CHEIN AND EDGAR G. GOODAIRE

1. Introduction

In this paper, we call a Moufang loop minimally nonassociative if it is not associative but all its proper subloops are associative. Evidently, this condition is equivalent to the statement that \(L \) is generated by any three elements which do not associate. Note also that a minimally nonassociative loop must be indecomposable because \(L = G \times H \) with \(G \) and \(H \) proper subloops implies that \(L \) is associative.

We begin with two lemmas, the first due to R. H. Bruck [?, Lemma 5.5, p. 125] and the second to the authors [?, Lemma 3].

Lemma 1.1. Let \(L \) be a Moufang loop in which \((x, y, (y, z)) = 1 \) is an identity. Then \((x^n, y, z) = (x, y, z)^n \) for all \(x, y, z \in L \) and all integers \(n \). Moreover, the associator \((x, y, z) \) lies in the centre of the subloop generated by \(x, y \) and \(z \).

Lemma 1.2. Let \(L \) be a Moufang loop with a unique nonidentity commutator \(s \). Then \(s \) is central of order 2, \(x^2 \in C(L) \) for all \(x \in L \) and, for any \(x, y, z \in L \), \((x, y, z)^3 \) is either 1 or \(s \). Moreover, \(L \) is an extra loop if and only if \(s \) is also a unique nonidentity associator in \(L \).

Our interest in minimally nonassociative Moufang loops originates in a paper written early this century by G. A. Miller and H. C. Moreno where the nonabelian groups, all of whose proper subgroups are abelian, are determined [?]. This classification, together with a construction of O. Chein leads quickly to a family of Moufang loops which are not associative, yet all of whose proper subloops are associative, that is, to a family of minimally nonassociative Moufang loops. The construction to which we refer is this [?, Theorem 1]. Let \(G \) be a group, \(u \) an element not in \(G \) and \(L = G \cup Gu \). Extending the multiplication from \(G \) to \(L \) by the rules

\[
g(hu) = (hg)u \]
\[
(gu)h = (gh^{-1})u \]
\[
(gu)(hu) = h^{-1}g
\]
makes a Moufang loop, denoted $M(G, 2)$, which is not associative if and only if G is not abelian. Clearly then, if $M(G, 2)$ is minimally nonassociative, it follows that G must be one of the groups arising in the work of Miller and Moreno.

Many of the loops which appear in this paper are of a type more general than $M(G, 2)$. These too were first identified by Chein [7, Theorem 2']. Let G be a nonabelian group and $g \mapsto g^*$ an involution of G (that is, an anti-automorphism of period two) such that gg^* is in the centre of G for all $g \in G$. Let u be an element not in G and form the set $L = G \cup Gu$. Define multiplication in L by extending multiplication from G with the rules

$$g(hu) = h(gu)$$

$$ (gu)h = (gh^*)u$$

$$ (gu)(hu) = g_0h^*g$$

where $g_0 = u^2$. Then L is a Moufang loop, not associative, and denoted $M(G, *, g_0)$ [7, §II.5.2]. Such loops have appeared often in the literature since RA loops—Moufang loops which have alternative loop rings in characteristic different from 2—are of this form [7], [7, Theorem IV.3.1]. Curiously, the loops of interest in this paper share many of the properties of an RA loop.

2. Main Results

Theorem 2.1. Let L be a minimally nonassociative finite Moufang loop with a unique nonidentity commutator. Then $L = M(G, *, g_0)$ for suitable G, * and g_0. Furthermore, L is extra and the unique nonidentity commutator is also a unique nonidentity associator. If $g^* = sg$ for noncentral $g \in G$, then L is an RA loop.

QUESTION FOR ORIN: In May, you were optimistic that a lot of our paper on CMLs could be applied to this situation. I guess the idea would be to get some sort of a converse to the above theorem.

Proof. Let s denote the unique nonidentity commutator of L. By Lemma 1.2, s is central of order 2. Thus $(x, y, (y, z)) = 1$ for any $x, y, z \in L$, so, by Lemma 1.1, the associator (x, y, z) lies in the centre of the subloop generated by x, y, z. This subloop is either trivial or the entire loop L. It follows that associators in L are central and hence that $L/Z(L)$ is an abelian group.

Now Lemma 1.2 says $(x, y, z)^6 = 1$ for any $x, y, z \in L$. By Lemma 1.1, $(x^6, y, z) = (x, y, z)^6 = 1$; in other words, $x^6 \in N(L)$ for any $x \in L$. Since $x^6 = (x^3)^2$ is also in $C(L)$, x^6 is central for x, so $L/Z(L)$ has exponent at most 6. Since L is generated by 3 elements, so is $L/Z(L)$. Thus, this abelian group is the direct product $C_r \times C_s \times C_t$ of at most three cyclic groups, with $r, s, t \in \{2, 3\}$. If both C_2 and C_3 appear, then $L/Z(L)$ can be generated by two elements (since $C_2 \times C_3 \cong C_6$), and it would follow by diassociativity that L is a group. Thus $r = s = t$ is either 2 or 3. If $L/Z(L) \cong C_3 \times C_3 \times C_3$, then $x^3 \in Z(L) \subseteq C(L)$ for any $x \in L$. Since also $x^2 \in C(L)$, by Lemma 1.2, it would follow that $x = x^3x^{-2} \in C(L)$ for all x, so L would be commutative, contrary to hypothesis. It follows that $L/Z(L) \cong C_2 \times C_2 \times C_2$. In
particular, squares in L are nuclear, so L is extra and s is a unique nonidentity associator, by Lemma 1.2.

Let the generators of $L/Z(L)$ be $Z(L)a$, $Z(L)b$ and $Z(L)u$. Thus $L = \langle Z(L), a, b, u \rangle$ is generated by a, b, u and its centre. Since L is not commutative, we may assume $ab \neq ba$. Let $G = \langle Z(L), a, b \rangle$ be the subloop of L generated by a, b and $Z(L)$. By diassociativity (and the properties of the centre of a loop), G is a group and it is not abelian (and hence contains s).

Since $u^2 \in Z(L) \subseteq G$ and the map $\theta: g \mapsto u^{-1}gu$ maps G to G—after all, $u^{-1}gu$ is either g or sg—we may apply [?, Theorem 1] and conclude that $L = G \cup Gu$ with multiplication given by the rules

$$
g(hu) = [(g\theta)(h\theta)]\theta^{-1}u$$

$$(gu)h = [g(h\theta^{-1})]u$$

$$(gu)(hu) = [(g\theta)h]\theta^{-1}g_0$$

for $g, h \in G$. If θ is an antihomomorphism, these rules are precisely those of (1.1) and $L = M(G, \ast, g_0)$ with $\ast = \theta$. Since G has a unique nonidentity central commutator and central squares, any element of G can be written in the form $za^\alpha b^\beta$ where $z \in Z(G)$ and $\alpha, \beta \in \{0, 1\}$. To prove that θ is an antihomomorphism then, it suffices to show that

$$u^{-1}(xy)u = (u^{-1}yu)(u^{-1}xu)$$

for all $x, y \in G$ with $(x, y) \neq 1 \neq (x, y, u)$. Let $t = (u^{-1}yu)(u^{-1}xu)$. By the right Moufang identity,

$$tu = (u^{-1}y)[u(u^{-1}xu)u] = (u^{-1}y)(ux)^2 = (u^{-1}y \cdot x)u^2$$

and so

$$t = (u^{-1}y \cdot x)u$$

$$= (u^{-1} \cdot yx)u(u^{-1}, y, x)$$

$$= u^{-1}(yx)u(u^{-1}, y, x)$$

$$= [u^{-1}(xy)u](x, y)(u^{-1}, y, x) = u^{-1}(xy)u$$

because $(x, y) = s = (u^{-1}, y, x)$. Indeed, θ is an antihomomorphism and $L = M(G, \ast, g_0)$.

Finally, note that $Z(G) = Z(L)$ and $G/Z(G) \cong C_2 \times C_2$. Thus G has the so-called “LC property” [?, pp. 305-306], [?, Proposition III.3.6]. The final statement now follows immediately from [?, Corollary III.3.4].

Proposition 2.2. Let $L = M(G, \ast, g_0)$ for some finite nonabelian group G, involution $g \mapsto g^*$ of G and $g_0 \in Z(G)$. Suppose $H^* \subseteq H$ for all nonabelian subgroups of G. If L is minimally nonassociative, then $G = \langle a, b, g_0 \rangle$ for any noncommuting elements $a, b \in G$. The converse holds if G is a 2-group.

Proof. Suppose L is minimally nonassociative and $a, b \in G$ do not commute. Then $H = \langle a, b, g_0 \rangle$ is a nonabelian group and $L_1 = M(H, \ast, g_0)$ is a subloop of L which is not associative. Thus $L_1 = L$, so $H = G$. Conversely, let G be a 2-group and
suppose $G = \langle a, b, g_0 \rangle$ for any noncommuting elements $a, b \in G$. Let x, y and z be any three elements of L which do not associate. We prove that $\langle x, y, z \rangle = L$. For this, we may assume that x, y, z are of the form $x = g, y = h, z = ku$, with $g, h, k \in G$. For example, $\langle gh, hu, ku \rangle = \langle g, (hu)(ku) \rangle$ and $(hu)(ku) \in G$. We compute the associator $a = (g, h, ku)$, recalling that this element is defined by the equation $\langle gh \rangle \langle ku \rangle = g \langle h \rangle \langle ku \rangle$. The rules for multiplication in L give $a \in G$, and $\langle gh \rangle \langle ku \rangle = \langle kgh \rangle u = (kgh) u$ imply $a = (g, h)^*$. Since $(x, y, z) \neq 1$, it follows that $(g, h) \neq 1$ and, by hypothesis, that $G = \langle g, h, g_0 \rangle$. Writing $k = w g_0^\gamma$ with w a work in g and h, we have

$$\langle g, h, ku \rangle = \langle g, h, g_0^\gamma u \rangle = \langle g, h, u^{2\gamma + 1} \rangle$$

(remembering that $g_0 = u^2$). Since $u^2 \in G$ and G is 2-group, $u^n = 1$ for some n, a power of 2. Writing $m + j(2\gamma + 1) = 1$ for integers i and j, we have $u = u^{m+j(2\gamma+1)} = (u^{2\gamma+1})^i$ and so $\langle g, h, ku \rangle = \langle g, h, u \rangle$. But $g_0 = u^2 \in \langle g, h, u \rangle$, hence $G = \langle g, h, g_0 \rangle \subseteq g, h, u \rangle$, so $L = G \cup Gu \subseteq \langle g, h, u \rangle$, giving equality and the desired result.

Corollary 2.3. A finite RA loop $L = M(G, *, g_0)$ is minimally nonassociative if and only if it is indecomposable and $G = \langle a, b, g_0 \rangle$ for any noncommuting elements $a, b \in G$.

Proof. An RA loop L has a unique nonidentity commutator s which is necessarily an element of the nonabelian group G. Since $g^* = g$ or $g^* = sg$ for $g \in G$, it follows that $H^* \subseteq H$ for any nonabelian subgroup H of G. At the beginning of this paper, we remarked that a minimally nonassociative loop is indecomposable. Thus one direction follows immediately from Proposition 2.2, and so does this other because in the case that L is indecomposable, it is known that G is a 2-group [?, Theorem 6], [?, Corollary V.1.4].

Remark 2.4. Finite indecomposable RA loops fall into seven categories which have been denoted L_1, \ldots, L_7 [?], [?, §V.3]. Direct application of Corollary 2.3 shows that the loops in classes L_2, L_4 and L_6 are the minimally nonassociative ones.

Temple University, Philadelphia, PA 19122 U.S.A.

E-mail address: orin@math.temple.edu

Memorial University of Newfoundland, St. John’s, Newfoundland, Canada A1C 5S7

E-mail address: edgar@math.mun.ca