Quantum Binary Polyhedral Groups
And Their Actions On Quantum Planes

Chelsea Walton

Joint work with Kenneth Chan, Ellen Kirkman, and James Zhang

November 18, 2012
An investigation of noncommutative/ Hopf invariant theory...
An investigation of noncommutative/ Hopf invariant theory...
...quantizations of results in classical invariant theory
An investigation of noncommutative/Hopf invariant theory...
...quantizations of results in classical invariant theory

Actions of finite subgroups of $SL_2(\mathbb{C})$

on

“planes” $\mathbb{C}[u, v]$
Goal

An investigation of noncommutative/ Hopf invariant theory...
...quantizations of results in classical invariant theory

Actions of quantum finite subgroups of $SL_2(\mathbb{C})$

on

“quantum planes”: noncommutative $\mathbb{C}[u, v]$
Let’s recall some classical results.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

Put $k = \mathbb{C}$
Let’s recall some **classical results**.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

[STC] $k[u, v]^G$ regular?

\[
k[u, v]^G \cong k[u', v'] \iff G \text{ is generated by reflections.}
\]
Let’s recall some classical results.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

[STC] $k[u, v]^G$ regular?
$k[u, v]^G \cong k[u', v'] \iff G$ is generated by reflections.

[Watanabe] $k[u, v]^G$ Gorenstein?
$G \leq SL_2(k) \Rightarrow k[u, v]^G$ Gorenstein
Let’s recall some classical results.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

[STC] $k[u, v]^G$ regular?
\[k[u, v]^G \cong k[u', v'] \iff G \text{ is generated by reflections.} \]

[Watanabe] $k[u, v]^G$ Gorenstein?
\[G \leq SL_2(k) \implies k[u, v]^G \text{ Gorenstein} \]

[Klein] Finite subgroups of $SL_2(k)$ are classified up to conjugation.

 types: A_n D_n E_6 E_7 E_8

“binary polyhedral groups” =: G_{BPG}

...they are not generated by reflections
Let’s recall some classical results.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

[STC] $k[u, v]^G$ regular?

$k[u, v]^G \cong k[u', v'] \iff G$ is generated by reflections.

[Watanabe] $k[u, v]^G$ Gorenstein?

$G \leq SL_2(k) \implies k[u, v]^G$ Gorenstein

[Klein] Finite subgroups of $SL_2(k)$ are classified up to conjugation.

- Types: A_n, D_n, E_6, E_7, E_8

- “binary polyhedral groups” $=: G_{BPG}$

...they are not generated by reflections.

[DuVal-McKay] Geometry of $k[u, v]^{G_{BPG}}$.

The “Kleinian” or “DuVal” singularities $X = \text{Spec}(k[u, v]^{G_{BPG}})$ are precisely the rational double points and the resolution graph of X is Dynkin.
“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

For $q \in k^\times$, categorically--

- **quantum groups** - dual to - **Hopf algs**

 - $SL_q(2) \cdots \cdots \cdots \mathcal{O}_q(SL_2(k))$
 - G_q fin. subgrp $\cdots \cdots \mathcal{O}_q(G)$ fin. Hopf quot.
“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

For $q \in k^\times$, categorically—

quantum groups - dual to - Hopf algs

$SL_q(2) \cdots \cdots \cdots \cdot \mathcal{O}_q(SL_2(k))$

G_q fin. subgrp \cdots \cdots \cdot \mathcal{O}_q(G)$ fin. Hopf quot.
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite quotients of $\mathcal{O}_q(SL_2(k))$

with structure: $(H, m, \Delta, u, \varepsilon, S)$
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite quotients of $\mathcal{O}_q(SL_2(k))$

with structure: $(H, m, \Delta, u, \epsilon, S)$

AS regular algebras R of gldim 2

AS = Artin-Schelter
* R is graded with $R_0 = k$
* global dimension 2
* AS-Gorenstein
* polynomial growth
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite
quotients of $O_q(SL_2(k))$
with structure: $(H, m, \Delta, u, \varepsilon, S)$

AS regular algebras R of gldim 2

AS = Artin-Schelter
* R is graded with $R_0 = k$
* global dimension 2
* AS-Gorenstein
* polynomial growth

Viewed as ‘noncommutative $k[u, v]$’ in
Noncommutative Projective AG
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

<table>
<thead>
<tr>
<th>Finite dim’l Hopf algebras H</th>
<th>AS regular algebras R of gldim 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>...that are not necessarily finite quotients of $\mathcal{O}_q(SL_2(k))$</td>
<td>AS = Artin-Schelter</td>
</tr>
<tr>
<td>with structure: $(H, m, \Delta, u, \varepsilon, S)$</td>
<td>* R is graded with $R_0 = k$</td>
</tr>
<tr>
<td></td>
<td>* global dimension 2</td>
</tr>
<tr>
<td></td>
<td>* AS-Gorenstein</td>
</tr>
<tr>
<td></td>
<td>* polynomial growth</td>
</tr>
</tbody>
</table>

Classified up to isomorphism:

- $k_q[u, v] := k\langle u, v \rangle / (vu - quv), \ q \in k^\times$
- $k_J[u, v] := k\langle u, v \rangle / (vu - uv - u^2)$
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite
quotients of $O_q(SL_2(k))$
with structure: $(H, m, \Delta, u, \epsilon, S)$

AS regular algebras R of gldim 2

* R is graded with $R_0 = k$
* global dimension 2
* AS-Gorenstein
* polynomial growth

Classified up to isomorphism:

$k_q[u, v] := k\langle u, v \rangle/(vu - quv), \quad q \in k^\times$

$k_J[u, v] := k\langle u, v \rangle/(vu - uv - u^2)$

H acts on R if R is a left H-module algebra: R is a left H-module and

$h \cdot (ab) = \sum (h_1 \cdot a)(h_2 \cdot b)$ and $h \cdot 1_R = \epsilon(h)1_R$ for all $h \in H$, and for all $a, b \in R$
Let $H \neq k$ be a finite dimensional Hopf algebra acting on an AS regular algebra R of global dimension 2.

(H1) [notion of faithfulness]

(H2) H preserves the grading of R

(H3) [notion of H-action having ‘determinant 1’]

... as results involving G with $\det(G) = 1$ motivate our results. See [DuVal-McKay] for instance.
Let \(H \neq k \) be a finite dimensional Hopf algebra acting on an AS regular algebra \(R \) of global dimension 2.

(H1) \(H \) acts on \(R \) inner faithfully: there is not an induced action of \(H/I \) on \(R \) for any nonzero Hopf ideal \(I \) of \(H \).

(H2) \(H \) preserves the grading of \(R \).

(H3) [notion of \(H \)-action having ‘determinant 1’] ... as results involving \(G \) with det(\(G \)) =1 motivate our results. See [DuVal-McKay] for instance.
Let $H \neq k$ be a finite dimensional Hopf algebra acting on an AS regular algebra R of global dimension 2.

(H1) H acts on R inner faithfully:
there is not an induced action of H/I on R for any nonzero Hopf ideal I of H

(H2) H preserves the grading of R

(H3) H-action of R have trivial “homological determinant”.
here, $\text{hdet}_HR: H \to k$ and it is trivial if equal to the counit map ε
Let $H \neq k$ be a finite dimensional Hopf algebra acting on an AS regular algebra R of global dimension 2.

(H1) H acts on R inner faithfully: there is not an induced action of H/I on R for any nonzero Hopf ideal I of H.

(H2) H preserves the grading of R.

(H3) H-action of R have trivial “homological determinant”.

Definition. A Hopf algebra H satisfying the conditions above is called a quantum binary polyhedral group, denoted by H_{QBPG}.
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{AS_{reg2}})\) are classified as follows.
Main Result

Theorem. [CKWZ] The pairs (H_{QBPG}, R_{Asreg2}) are classified as follows.

H noncom & s.s.

$(kG_{BPG}, k[u, v])$

G_{BPG} nonabelian

$(kD_{2n}, k^{−1}[u, v])$

$n \geq 3$

$(\mathcal{D}(G_{BPG})^°, k^{−1}[u, v])$

$\mathcal{D}(G_{BPG})$: Hopf deformation of nonabelian b.p.g. [BN]
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{Asreg})\) are classified as follows.

<table>
<thead>
<tr>
<th>(H \text{ noncom & s.s.})</th>
<th>(H \text{ comm (} & \text{ s.s.)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v]))</td>
<td>((kC_2, \text{any } R))</td>
</tr>
<tr>
<td>(G_{BPG} \text{ nonabelian})</td>
<td>diagonal action</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v]))</td>
<td>((kC_2, k_{-1}[u, v]))</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td>non-diagonal action</td>
</tr>
<tr>
<td>((\mathcal{D}(G_{BPG})^\circ, k_{-1}[u, v]))</td>
<td>((kC_n, k_q[u, v]))</td>
</tr>
<tr>
<td>(\mathcal{D}(G_{BPG}): \text{Hopf deformation})</td>
<td>(n \geq 3)</td>
</tr>
<tr>
<td>of nonabelian b.p.g. [BN]</td>
<td>(((kD_{2n})^\circ, k_{-1}[u, v]))</td>
</tr>
<tr>
<td></td>
<td>(n \geq 3)</td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{Asreg2})\) are classified as follows.

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v])) (G_{BPG}) nonabelian</td>
<td>((kC_2, \text{any } R)) diagonal action</td>
<td>For (q) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v])) (n \geq 3)</td>
<td>((kC_2, k_{-1}[u, v])) non-diagonal action</td>
<td>(((T_q, \alpha, n)^\circ, k_{q^{-1}}[u, v])) (T_q, \alpha, n: \text{generalized Taft alg.})</td>
</tr>
<tr>
<td>((D(G_{BPG})^\circ, k_{-1}[u, v])) (D(G_{BPG}): \text{Hopf deformation of nonabelian b.p.g. } [BN])</td>
<td>((kC_n, k_q[u, v])) (n \geq 3)</td>
<td>((H, k_{q^{-1}}[u, v])) (\text{ord}(q) \text{ odd})</td>
</tr>
<tr>
<td>(((kD_{2n})^\circ, k_{-1}[u, v])) (n \geq 3)</td>
<td>((H, k_{q^{-1}}[u, v])) (\text{ord}(q) \text{ even})</td>
<td></td>
</tr>
<tr>
<td>1 (\rightarrow (kG_{BPG})^\circ \rightarrow H^\circ \rightarrow \overline{\mathcal{O}_q(SL_2)} \rightarrow 1)</td>
<td>1 (\rightarrow (kG_{PG})^\circ \rightarrow H^\circ \rightarrow \overline{\mathcal{O}_q(SL_2)} \rightarrow 1)</td>
<td></td>
</tr>
</tbody>
</table>
Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{ASreg2})\) are classified as follows.

\[
R = k[u, v] \implies H = kG_{BPG}, \text{ no "new" } H
\]

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v]))</td>
<td>((kC_2, k[u, v]))</td>
<td>For (q) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>(G_{BPG}) nonabelian</td>
<td>diagonal action</td>
<td>(((T_q, \alpha, n)^\circ, k_{q-1}[u, v]))</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v]))</td>
<td>non-diagonal action</td>
<td>(T_{q, \alpha, n}: \text{ generalized Taft alg.})</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td>((kC_n, k[u, v]))</td>
<td>((H, k_{q-1}[u, v])) \text{ ord}(q) odd</td>
</tr>
<tr>
<td>(\mathcal{D}(G_{BPG})^\circ, k_{-1}[u, v])</td>
<td>(n \geq 3)</td>
<td>(1 \rightarrow (kG_{BPG})^\circ \rightarrow H^\circ \rightarrow O_q(SL_2) \rightarrow 1)</td>
</tr>
<tr>
<td>(\mathcal{D}(G_{BPG}): \text{ Hopf deformation}) \text{ of nonabelian b.p.g. [BN]}</td>
<td>((kD_{2n})^\circ, k_{-1}[u, v])</td>
<td>((H, k_{q-1}[u, v])) \text{ ord}(q) even</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td></td>
<td>(1 \rightarrow (kG_{PG})^\circ \rightarrow H^\circ \rightarrow O_q(SL_2) \rightarrow 1)</td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{ASreg2})\) are classified as follows.

For \(R = k_{-1}[u, v]\)

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v])) (G_{BPG}) nonabelian</td>
<td>((kC_2, k_{-1}[u, v])) diagonal action</td>
<td>For (q) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v])) (n \geq 3)</td>
<td>((kC_2, k_{-1}[u, v])) (T_{q, \alpha, n} : \text{generalized Taft alg.})</td>
<td></td>
</tr>
<tr>
<td>((\mathcal{D}(G_{BPG})^\circ, k_{-1}[u, v])) (\mathcal{D}(G_{BPG}) : \text{Hopf deformation of nonabelian b.p.g. [BN]})</td>
<td>((kC_n, k_{-1}[u, v])) (n \geq 3)</td>
<td>((H, k_{q-1}[u, v])) ord((q)) odd</td>
</tr>
<tr>
<td>((kD_{2n})^\circ, k_{-1}[u, v])) (n \geq 3)</td>
<td>((kD_{2n})^\circ, k_{-1}[u, v]))</td>
<td>((H, k_{q-1}[u, v])) ord((q)) even</td>
</tr>
<tr>
<td>(1 \rightarrow (kG_{BPG})^\circ \rightarrow H^\circ \rightarrow \overline{O_q(SL_2)} \rightarrow 1)</td>
<td>(1 \rightarrow (kG_{BPG})^\circ \rightarrow H^\circ \rightarrow \overline{O_q(SL_2)} \rightarrow 1)</td>
<td></td>
</tr>
</tbody>
</table>
Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{ASreg2})\) are classified as follows.

For \(R = k_q[u, v]\) with \(q\) a root of unity, \(q^2 \neq 1\)

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v]))</td>
<td>((kC_2, k_q[u, v]))</td>
<td>[(T_q,\alpha,n)^\circ, k_q^{-1}[u, v]]</td>
</tr>
<tr>
<td>(G_{BPG}) nonabelian</td>
<td>(\text{diagonal action})</td>
<td>(T_{q,\alpha,n}: \text{generalized Taft alg.})</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v]))</td>
<td>((kC_2, k_{-1}[u, v]))</td>
<td>((H, k_q^{-1}[u, v])) (\text{ord}(q)) odd</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td>(\text{non-diagonal action})</td>
<td>(1 \to (kG_{BPG})^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1)</td>
</tr>
<tr>
<td>(\mathcal{D}(G_{BPG})^\circ, k_{-1}[u, v])</td>
<td>((kC_n, k_q[u, v]))</td>
<td>((H, k_q^{-1}[u, v])) (\text{ord}(q)) even</td>
</tr>
<tr>
<td>(\mathcal{D}(G_{BPG}): \text{Hopf deformation of nonabelian b.p.g. [BN]})</td>
<td>(n \geq 3)</td>
<td>(1 \to (kG_{PG})^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1)</td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs (H_{QBPG}, R_{ASreg2}) are classified as follows.

For $R = k_q[u, v]$ for q not a root of 1

<table>
<thead>
<tr>
<th>H noncom & s.s.</th>
<th>H comm (& s.s.)</th>
<th>H nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(kG_{BPG}, k[u, v])$</td>
<td>$(kC_2, k_q[u, v])$</td>
<td>For q is a root of 1, $q^2 \neq 1$</td>
</tr>
<tr>
<td>G_{BPG} nonabelian</td>
<td>diagonal action</td>
<td>$((T_q, \alpha, n)^\circ, k_q^{-1}[u, v])$</td>
</tr>
<tr>
<td>$(kD_{2n}, k_{-1}[u, v])$</td>
<td></td>
<td>$T_{q, \alpha, n}$: generalized Taft alg.</td>
</tr>
<tr>
<td>$n \geq 3$</td>
<td>non-diagonal action</td>
<td></td>
</tr>
<tr>
<td>$(\mathcal{D}(G_{BPG})^\circ, k_{-1}[u, v])$</td>
<td>$(kC_n, k_q[u, v])$</td>
<td>$(H, k_q^{-1}[u, v])$ ord(q) odd</td>
</tr>
<tr>
<td>$\mathcal{D}(G_{BPG})$: Hopf deformation of nonabelian b.p.g. [BN]</td>
<td>$n \geq 3$</td>
<td>$1 \to (kG_{BPG})^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$((kD_{2n})^\circ, k_{-1}[u, v])$</td>
<td>$(H, k_q^{-1}[u, v])$ ord(q) even</td>
</tr>
<tr>
<td></td>
<td>$n \geq 3$</td>
<td>$1 \to (kG_{PG})^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1$</td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{ASreg2})\) are classified as follows.

For \(R = kJ[u, v]\)

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v]))</td>
<td>((kC_2, kJ[u, v]))</td>
<td>For (q) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>(G_{BPG}) nonabelian</td>
<td>diagonal action</td>
<td>(((T_q,\alpha,n)^\circ, k_{q-1}[u, v]))</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v]))</td>
<td>((kC_2, k_{-1}[u, v]))</td>
<td>(T_{q,\alpha,n}): generalized Taft alg.</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td>non-diagonal action</td>
<td>((H, k_{q-1}[u, v])) ord((q)) odd</td>
</tr>
<tr>
<td>(\mathcal{D}(G_{BPG})^\circ, k_{-1}[u, v])</td>
<td>((kC_n, k_q[u, v]))</td>
<td>(1 \to (kG_{BPG})^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1)</td>
</tr>
<tr>
<td>(\mathcal{D}(G_{BPG})): Hopf deformation of nonabelian b.p.g. [BN]</td>
<td>(n \geq 3)</td>
<td>((H, k_{q-1}[u, v])) ord((q)) even</td>
</tr>
<tr>
<td>[((kD_{2n})^\circ, k_{-1}[u, v])]</td>
<td>((kC_n, k_q[u, v]))</td>
<td>(1 \to (kG_{PG})^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1)</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td>non-diagonal action</td>
<td></td>
</tr>
</tbody>
</table>
Given a pair \((H = H_{QBPG}, R = R_{ASreg2})\) in the main theorem, to say:

a finite dimensional Hopf algebra \(H\) acts inner faithfully and preserves the grading of an AS regular algebra \(R\) of gldim 2, with \(H\)-action having trivial homological determinant

we have the following results.

\[
R^H = \{ r \in R \mid h \cdot r = \epsilon(h)r \text{ for all } h \in H \}
\]

[On the regularity of the invariant subring \(R^H\), motivated by [STC]]

[On the Gorenstein condition for the invariant subring \(R^H\), motivated by [Watanabe]]
Further Results

Given a pair \((H = H_{QBPG}, R = R_{ASreg2})\) in the main theorem, to say:

a finite dimensional Hopf algebra \(H\) acts inner faithfully and preserves the grading of an AS regular algebra \(R\) of gldim 2, with \(H\)-action having trivial homological determinant

we have the following results.

\[
R^H = \{r \in R \mid h \cdot r = \epsilon(h)r\ \text{for all} \ h \in H\}
\]

Theorem. [CKWZ] Let \((H, R)\) be as above with \(H\) semisimple. If \(R^H \neq R\), then \(R^H\) is *not* AS-regular. \((R^H\) has \(\infty\) gldim.)

[On the Gorenstein condition for the invariant subring \(R^H\), motivated by [Watanabe]]
Further Results

Given a pair \((H = H_{QBPG}, R = R_{ASreg2})\) in the main theorem, to say:

a finite dimensional Hopf algebra \(H\) acts inner faithfully and preserves the grading of an AS regular algebra \(R\) of gldim 2, with \(H\)-action having trivial homological determinant

we have the following results.

\[
R^H = \{ r \in R \mid h \cdot r = \epsilon(h)r \text{ for all } h \in H \}
\]

Theorem. [CKWZ] Let \((H, R)\) be as above with \(H\) semisimple. If \(R^H \neq R\), then \(R^H\) is *not* AS-regular. \((R^H\) has \(\infty\) gldim.)

Proposition. [CKWZ] Let \((H, R)\) be as above. The invariant subring \(R^H\) is AS-Gorenstein. (semisimple case by [KKZ])
Future Work

(1) Since R^H is Gorenstein and is not regular ...
Motivated by [DuVal-McKay] and others:

Study the geometry of ‘noncommutative Gorenstein singularities’ R^H
for (H, R) in the main theorem, particularly with H semisimple.
Future Work

(1) Since R^H is Gorenstein and is not regular ...
Motivated by [DuVal-McKay] and others:

Study the geometry of ‘noncommutative Gorenstein singularities’ R^H
for (H, R) in the main theorem, particularly with H semisimple.

(2) Motivated by [STC] and others:

Study finite dimensional Hopf algebra actions on AS regular algebras
of gldim 2 with arbitrary homological determinant.
(1) Since R^H is Gorenstein and is not regular ...
Motivated by [DuVal-McKay] and others:

Study the geometry of ‘noncommutative Gorenstein singularities’ R^H
for (H, R) in the main theorem, particularly with H semisimple.

(2) Motivated by [STC] and others:

Study finite dimensional Hopf algebra actions on AS regular algebras
of gldim 2 with arbitrary homological determinant.

(3) Since AS regular algebras of gldim 3 have been classified...

Study finite dim’l Hopf algebra actions on AS reg. algs of gldim 3.

... AS regular algebras of gldim > 3 have not been classified
References:

[DuVal-McKay] P. du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction, 1934; J. McKay, Graphs, singularities, and finite groups, 1980.

[STC] = [Ben93, Theorem 7.2.1]

[Watanabe] = [Ben93, Theorem 4.6.2]

Thank you for listening!