Given a graded algebra \(A = \bigoplus_{i \in \mathbb{N}} A_i \) and a filtered algebra \(D = \bigcup_{i \in \mathbb{N}} F_i \), \(0 \leq F_i \leq \cdots \leq D \).

Say \(D \) is a PBW deformation of \(A \) if \(\gamma(D) = A \) as algebras.

\[\bigoplus_{i \in \mathbb{N}} F_i/F_i-1 \]

Examples

- **Weyl algebra** \(A_n(\mathbb{C}) = \mathbb{C}\langle x_1, \ldots, x_n \rangle / (x_i x_j - x_j x_i - 1) \)

 is a PBW deformation of \(\mathbb{C}[x_1, \ldots, x_n] \)

- \(V = \) finite dimensional \(\mathbb{C}^k \)

 \[L_k = \mathbb{C}^k \]

 \[K: \text{Span}_{\mathbb{C}} \mathbb{C}^k - \mathbb{C}^k \to V \]

 \[W_k \]

 \[\bigoplus_{k \geq 0} W_k \]

 \[S(V) = \mathbb{C}^k \bigoplus_{k \geq 0} W_k \]

 \[D(V) = \bigoplus_{k \geq 0} W_k \]

 \[\text{K is skew symmetric} \]

 \[\text{k satisfies Jacobi identity} \]

 \[0_k = U(V) \]

 \[\gamma(U(V)) = \mathbb{C}[x_1, \ldots, x_n] \]

Properties preserved under PBW deformation

- integral domain
- prime
- (right) noetherian
- \(\text{gcd}(A) \leq \text{gcd}(D) \)
- \(\text{Ker}(\delta) \leq \text{Ker}(\delta_A) \)
- \(\text{g.l.d.m.}(D) \leq \text{g.l.d.m.}(A) \)

By properly investigating [Faeger-Tojborg, 2013, Wu-Chu, 2014]
Representations of PDW deformations of small pro-CG algebras has been of great (recent) interest to symplectic reflection algebras and certain Cherednik algebras, various types of Hecke algebras.

Some results on PDW deformations of \(B \# H \), \(B = T(V)/R \) quadratic algebra.

Have nice enough conclusions for

\[
\mathcal{L}_k = T(V) \# H \quad \text{with} \quad (r - k(r)) \in R
\]
\[k : R \to H \quad \text{is linear} \]

\[\text{to be a PDW of } B \# H \]

\[\text{some of these results hold with } k \text{ as above} \]

\[k : R \to H \oplus (\text{vov}) \]

\[\text{all kernel are } \text{affine} \] algebra

Theorem [K-Witten, etc.]: \(B = T(V)/R \) Koszul algebra \((R \subseteq V \oplus V) \)

\[\text{Let } H \text{ be a finite algebra with bijective antipode } \]

\[\text{that acts on } B \text{ (preserving grading)} \]

Then, \(\mathcal{L}_k \) is a PDW deformation of \(B \# H \) if and only if

\[k \text{ is } H \text{-invariant } \quad k(\theta \cdot r) = k(r) \cdot k(\theta) \quad \text{and} \quad \theta \cdot m = 0 \quad \text{for } (\theta \cdot m) \in (\text{ov}) \text{vov} \]

need more considerations
Outline of proof. (Following Braverman-Gaitsgory)

\[\Rightarrow \quad \text{(injective direction)} \]

\[\begin{align*}
\left(\ell \otimes_{A} V \right)^{q} & = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} & \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \end{align*} \]

\(\otimes_{A} V \)

\[\left(\ell \otimes_{A} V \right)^{q} \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]

\[\left(\ell \otimes_{A} V \right)^{q} = \{ \text{graded def. of } B \oplus H \text{ over } C[V] \} \\
\text{where} \\
0 \otimes_{A} V & = A \otimes_{A} C[V], \\
0 & \]
Future work: Study PoW deformations of B\oplus H where

\[
\begin{array}{ccc}
B & \oplus & H \\
\text{Reg} & & \\
\end{array}
\]

1) \quad N-Koszul \quad H

\[
\begin{bmatrix}
N-Koszul \\
G \\
\text{Coxing-Eshlan}
\end{bmatrix}
\]

2) "Good\-\"coproduct" of cochains

\[
\begin{array}{c}
S_g(V) \\
\text{Lm} \\
\text{Mm}
\end{array}
\quad U_g(s,m)
\]

\[
\begin{array}{c}
S_g(V) \\
\text{Lm} \\
\text{Mm}
\end{array}
\quad U_g(s,\ell_2)
\]

3) The recent work of Dvir, Tzalgarchik, Lasz, Tzalgarchik, Shkarchke,

\[
S(V) \\
V = \mathbb{C}^n \oplus \mathbb{C}^n \\
V = \mathbb{C}^n
\]

\[
U(g) \\
\frac{\text{Lm}}{\text{Mm}} \\
\text{Lm}
\]