ON THE COHOMOLOGY OF POLYCYCLIC-BY-FINITE GROUPS

Martin LORENZ

Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-5300 Bonn 3, FRG

Communicated by K.W. Gruenberg
Received 11 May 1984
Revised 19 November 1984

Let \(k[G] \) be the group algebra of a polycyclic-by-finite group \(G \) over a field \(k \). We show that, for any finitely generated \(k[G] \)-module \(V \), \(H^*(G, V) = \bigoplus_{n \geq 0} H^n(G, V) \) is a Noetherian module over the cohomology algebra \(H^*(G, k) \). In particular, the power series \(P(G; t) = \sum_{n \geq 0} \dim_k H^n(G, V) t^n \in \mathbb{Z}[t] \) is a rational function in \(t \) of the form \(f(t)/\prod_{i=1}^r (1 - t^{k_i}) \), where \(f(t) \in \mathbb{Z}[t] \). For example, if \(G \) has no non-trivial finite normal subgroups and contains a torsion-free normal subgroup of index 2 and char \(k = 2 \), then we show that \(P(G; -1) \) is always defined and equals \((-1)^h \varphi(V)/\varphi(k[G])\), where \(h = h(G) \) is the Hirsch number of \(G \) and \(\varphi(\cdot) \) denotes the Goldie rank.

Introduction

A celebrated theorem due to Farkas, Snider [9], and Cliff [5] asserts that the group algebra \(k[G] \) of a torsion-free polycyclic-by-finite group \(G \) over a field \(k \) has no zero divisors. The proof heavily uses the fact that, for \(G \) torsion-free, \(k[G] \) has finite global dimension. In the presence of torsion in \(G \), however, \(k[G] \) has infinite global dimension if char \(k \) divides the order of an element of \(G \setminus \{1\} \). The goal of this note is to establish a cohomological finiteness result which holds for general polycyclic-by-finite \(G \) and arbitrary coefficient fields. We also briefly discuss the relations between the cohomology of a finitely generated \(k[G] \)-module and its so-called Goldie rank in the case when \(k[G] \) is prime.

Specifically, let \(R \) be a commutative Noetherian ring and let \(V \) be a finitely generated (left) module over the group ring \(R[G] \), where \(G \) is polycyclic-by-finite. Then we will show in Section 1 that \(H^*(G, V) = \bigoplus_{n \geq 0} H^n(G, V) \) is a Noetherian module over the cohomology ring \(H^*(G, R) = \bigoplus_{n \geq 0} H^n(G, R) \) under the action given by the cup product \(\cup : H^*(G, R) \times H^*(G, V) \to H^*(G, V) \). As a standard consequence, it follows that for any additive \(\mathbb{Z} \)-valued function \(\lambda \) on the class of all finitely generated \(R \)-modules, the power series

\[
P(V; t) = \sum_{n \geq 0} \lambda(H^n(G, V)) t^n \in \mathbb{Z}[t]
\]
is a rational function in t of the form $f(t)/\prod_{i=1}^{j} (1 - t^{k_i})$ with $f(t) \in \mathbb{Z}[t]$. For finite groups, these results are due to Evens [7]. Now each polycyclic-by-finite group G contains a normal subgroup N of finite index which is poly-(infinite cyclic), and hence of finite cohomological dimension. Thus our strategy is to use Evens’s theorem and extend it by means of the Lyndon–Hochschild–Serre (LHS) spectral sequence for $1 \to N \to G \to G/N \to 1$. The arguments here are similar to the ones used by Evens.

In Section 2, we consider finitely generated modules V over the group algebra $k[G]$ of G over a field k, under the assumption that $k[G]$ is prime. (This holds if and only if G has no finite normal subgroups $\neq \langle 1 \rangle$ [14, Theorem 4.2.10].) We discuss the relations between the Poincaré series $P(V; t) = \sum_{n \geq 0} \dim_k H^n(G, V)t^n$ and the Goldie rank $\varrho(V)$ of V. Here, by definition, $\varrho(V)$ is the composition length of $Q(k[G]) \otimes_{k[G]} V$ over $Q(k[G])$, the simple Artinian quotient ring of $k[G]$. In the special case where G has a torsion-free normal subgroup of index 2 and char $k = 2$ it is shown that, for any finitely generated $k[G]$-module V, $P_G(V; -1) = (-1)^h \varrho(V)/\varrho(k[G])$ with $h = h(G)$, the Hirsch number of G.

The crucial facts about polycyclic-by-finite groups that will be used in this article are the following:

1. group rings of polycyclic-by-finite groups over Noetherian rings are Noetherian [14, 10.2.7], and
2. polycyclic-by-finite groups are virtual Poincaré duality groups [4, Ch. VIII, §§10, 11], [2].

A good deal of the material in Section 1 holds for more general classes of groups, provided one assumes the coefficient modules V in $H^*(G, V)$ to be finitely generated over the ground ring R (see Remark 3). Since we are interested in applications to infinite-dimensional modules, we will concentrate on polycyclic-by-finite groups.

Notations and conventions

Throughout, R will be a commutative Noetherian ring, k will denote a commutative field, and G will be a polycyclic-by-finite groups. All modules over the group rings $R[G]$ and $k[G]$ will be left modules. In general, our notation follows [14] and [6].

1. The finiteness theorem

The proof of the first lemma has been shown to us by R. Bieri.

Lemma 1. Let V be a finitely generated $R[G]$-module. Then for all $n \geq 0$, $H^n(G, V)$ and $H_n(G, V)$ are Noetherian as R-modules.

Proof. Since $R[G]$ is Noetherian, we can choose a projective resolution $P = (P_n)_{n \geq 0}$
of V over $R[G]$ with each P_n finitely generated over $R[G]$. Now $H_n(G, V) \cong \text{Tor}_n^{R[G]}(R, V) \cong H_n(R \otimes_{R[G]} P)$, and $R \otimes_{R[G]} P$ is a complex of finitely generated R-modules. Since R is Noetherian, each $H_n(R \otimes_{R[G]} P)$ is Noetherian over R, which proves the assertion for $H_n(G, V)$.

Now let N be a torsion-free polycyclic normal subgroup of G having finite index in G. Then, by [2, Satz 3.1.2 and Bemerkung 1], there exists R-isomorphisms

$$H^n(N, V) \cong H_{cdN-n}(N, \bar{R} \otimes_R V),$$

where $cd N$ denotes the cohomological dimension of N and \bar{R} is an $R[N]$-module such that $\bar{R} \cong R$ as R-modules but each $x \in N$ acts as $1d$ or $-1d$. Clearly, $\bar{R} \otimes_R V$ is finitely generated over $R[N]$, as V is, and so the foregoing implies that $H^n(N, V)$ is a Noetherian R-module. To prove the assertion for $H^n(G, V)$ consider the LHS-spectral sequence for $1 \to N \to G \to G/N \to 1$. Its E_2-term $E_2^{0,q}(V) = H^p(G/N, H^q(N, V))$ is finitely generated over R. Hence $E_2^{0,q}(V)$ is Noetherian over R, being a sub-quotient of $E_2^{0,q}(V)$, and we conclude that $H^{p+q}(G, V)$ is Noetherian over R. \]

Now consider $H^*(G, R) = \bigoplus_{n \geq 0} H^n(G, R)$, with the trivial action of G on R, and $H^*(G, V) = \bigoplus_{n \geq 0} H^n(G, V)$. The multiplication of R gives rise to a cup product $\cup : H^p(G, R) \times H^q(G, R) \to H^{p+q}(G, R)$ which makes $H^*(G, R)$ an R-algebra and, similarly, the action of R on V yields an action of $H^*(G, R)$ on $H^*(G, V)$ via cup products. The following result is the promised extension of Evens's theorem [7, Theorem 6.1].

Theorem 2. Let V be a finitely generated $R[G]$-module. Then $H^*(G, V)$ is a Noetherian module over $H^*(G, R)$.

Proof. Let N be a torsion-free polycyclic normal subgroup of G having finite index in G. Then N has finite cohomological dimension [10, §8.8, Lemma 8] and so Lemma 1 implies that $H^*(N, V) = \bigoplus_{n \geq 0} H^n(N, V)$ is Noetherian over R. By Evens's theorem, we conclude that $H^*(G/N, H^*(N, V))$ is Noetherian over $H^*(G/N, R)$.

Now consider the LHS-spectral sequence for $1 \to N \to G \to G/N \to 1$, with E_2-term $E_2^{p,q}(\cdot) \cong H^p(G/N, H^q(N, \cdot))$. For each $r \geq 2$, there is a canonical pairing

$$\cdot : E_r^{p,q}(R) \times E_r^{s,t}(V) \to E_r^{p+q,s+t}(V)$$

induced by the action of R on V. If d_r denotes the differential of $E_r(\cdot)$, then one has the following product rule

$$d_r(a \cdot b) = (d_r a) \cdot b + (-1)^{p+q} a \cdot (d_r b) \quad (a \in E_r^{p,q}(R), b \in E_r^{s,t}(V)).$$

Moreover, since $E_r^{p,q}(\cdot) = E_\infty^{p,q}(\cdot)$ for $r > \max\{ p, q + 1 \}$, we get an analogous pairing for the E_∞-terms. For $r = 2$, the above pairing coincides with the cup product pairing

$$\cup : H^p(G/N, H^q(N, R)) \times H^s(G/N, H^t(N, V)) \to H^{p+s}(G/N, H^{q+t}(N, V)),$$
except for a ± sign [12, Section II.5]. Specifically, letting Φ_V denote the isomorphism $E_2(V) \cong H^*(G/N, H^*(N, V))$ and similarly for R, we have

$$\Phi_V(a \cdot b) = (-1)^{pr} \Phi_R(a) \cup \Phi_V(b) \quad (a \in E_2^{p,q}(R), b \in E_2^{r,s}(V)).$$

In particular, $E_2^{*,0}(R)$ becomes a graded ring, isomorphic to the cohomology ring $H^*(G/N, R)$, and $E_2(V) = \bigoplus_{i=0}^{n} E_2^{*,i}(V)$ is a direct sum of graded modules over $E_2^{*,0}(R)$. Altering the action by a ± sign as above doesn’t affect the lattice of graded submodules and so we conclude from the first paragraph of the proof that $E_2(V)$ has the ascending chain condition for graded $E_2^{*,0}(R)$-submodules. Hence, by [13, Ch. A, Theorem II.3.5], $E_2(V)$ is Noetherian over $E_2^{*,0}(R)$.

Let $h_r : \ker d_r \to E_{r+1}(\cdot)$ be the canonical epimorphism and set

$$E_{\infty}(V) = \{ b \in E_2(V) \mid h_{r-1}(\ldots h_2(b) \in \ker d, \text{ for all } r \geq 2 \},$$

and similarly for $E_{\infty}(R)$. Note that $E_2^{*,0}(R) \subseteq E_{\infty}(R)$, since the spectral sequence lies in the first quadrant. The product rule for the differentials d_r implies that $E_{\infty}(R) \cdot E_{\infty}(V) \subseteq E_{\infty}(V)$. In particular, $E_{\infty}(V)$ is an $E_2^{*,0}(R)$-submodule of $E_2(V)$ and as such is Noetherian. Under the projection maps

$$E_{\infty}(V) \to E_\infty(V) \quad \text{and} \quad E_2^{*,0}(R) \to E_{\infty}(0)(R),$$

the action of $E_2^{*,0}(R)$ on $E_\infty(V)$ induces the pairing $\cdot : E_{\infty}(0)(R) \times E_\infty(V) \to E_\infty(V)$ mentioned above. Thus $E_\infty(V)$ is Noetherian as a module over $E_{\infty}(0)(R)$ and, a fortiori, over $E_{\infty}(R)$.

Finally, $E_{\infty}(\cdot)$ is the associated graded module of $H^*(G, \cdot)$ with respect to a suitable filtration of $H^*(G, \cdot)$ which makes $H^*(G, R)$ a filtered ring and $H^*(G, V)$ a filtered module over $H^*(G, R)$ [12, Section II.1]. Therefore, $H^*(G, V)$ is Noetherian over $H^*(G, R)$ [13, Ch. D, Corollary IV.4], and the theorem is proved.

Remark 3. If V in the above theorem is assumed to be finitely generated over R, then the same conclusion holds for much wider classes of groups G. Namely, it certainly suffices to assume that G has a subgroup N of finite index such that the trivial $R[N]$-module R has a finite resolution by finitely generated projectives over $R[N]$ (so, in the terminology of [4, Chap. VIII], G is of type VFP over R). Indeed, the above proof can be copied literally, with Lemma 1 becoming superfluous, as $H^*(N, V)$ is clearly Noetherian over R. Therefore, part (i) of the following corollary holds more generally and so does part (ii) provided the coefficient module V is finitely generated over R.

Corollary 4. (i) $H^*(G, R)$ is a Noetherian ring and a finitely generated R-algebra (Quillen [15, Proposition 14.5]).

(ii) Let V be a finitely generated $R[G]$-module. Then for any additive $\mathbb{Z}_{\geq 0}$-valued function λ on the class of all finitely generated R-modules, the power series (cf. Lemma 1)
On the cohomology of polycyclic-by-finite groups

\[P_G(V; t) = \sum_{n \geq 0} \lambda(H^n(G, V))t^n \in \mathbb{Z}[t] \]

is a rational function in \(t \) of the form \(f(t)/\prod_{i=1}^s (1-t^{k_i}) \) with \(f(t) \in \mathbb{Z}[t] \). Moreover, if \(\text{cr}_G(V) \) denotes the order of the pole of \(P_G(V; t) \) at \(t = 1 \), then

\[\text{cr}_G(V) = \inf \{ r \in \mathbb{R} \mid \lambda(H^n(G, V)) \leq cn^{r-1} \text{ for some } c > 0 \text{ and all } n \gg 0 \} \]

Furthermore, \(\text{cr}_G(V) \leq \text{cr}_G(R) \) where \(R \) is the trivial \(R[G] \)-module.

Proof. (i) Theorem 2 implies that \(H^*(G, R) \) is a Noetherian ring. In particular, the ideal \(H^+(G, R) = \bigoplus_{n > 0} H^n(G, R) \) is finitely generated as a left ideal, say by the elements \(x_i \in H^{k_i}(G, R) \) \((i = 1, 2, \ldots, s) \). It is then easy to see that \(x_1, x_2, \ldots, x_s \) together with 1 generate \(H^*(G, R) \) as an \(R \)-algebra (cf. [1, Proposition 10.7]).

(ii) In view of part (i) and Theorem 2, the assertion concerning the rationality of \(P_G(V; t) \) follows from the Hilbert–Serre theorem [1, Theorem 11.1]. Indeed, \(s \) and the exponents \(k_i \) in \(f(t)/\prod_{i=1}^s (1-t^{k_i}) \) can be chosen as in part (i). (The proof given in [1] works for \(H^*(G, R) \), since \(H^*(G, R) \) satisfies \(xy = (-1)^{m+n}yx \) for \(x \in H^n(G, R), y \in H^m(G, R) \).)

As a consequence of the specific form of the rational function \(P_G(V; t) \) it follows that, for large enough \(n \), the \(n \)-th coefficient \(d_n = \lambda(H^n(G, V)) \) can be written as

\[d_n = \sum_{j=1}^r P_j(n) \alpha_j^n. \]

Here, the \(\alpha_j \)'s are roots of \(\prod_{i=1}^s (1-t^{k_i}) \) and each \(P_j(n) \) is a polynomial in \(n \) with rational coefficients [11, Section 3.1]. Set \(k = \text{lcm}\{k_i \mid i = 1, 2, \ldots, s \} \) and \(\varrho = \inf \{ r \in \mathbb{R} \mid \lambda(H^n(G, V)) \leq cn^{r-1} \text{ for some } c > 0 \text{ and all } n \gg 0 \} \). Then \(\alpha_j^k = 1 \) for all \(j \) and there are functions \(c_l : \mathbb{Z}/k\mathbb{Z} \to \mathbb{Q} \) \((l = 0, 1, \ldots, h) \) with \(c_h \neq 0 \) and

\[d_n = \sum_{i=0}^h c_i(n + k\mathbb{Z})n^l \quad \text{for all } n \gg 0. \]

Clearly, \(\varrho - 1 = h \). Now consider

\[Q(t) = P_G(V; t)/(1-t) = \sum_{n \geq 0} D_nt^n \]

with

\[D_n = \sum_{m \leq n} d_n = \sum_{i=0}^{h+1} C_i(n + k\mathbb{Z})n^l \quad (n \gg 0) \]

for suitable functions \(C_i : \mathbb{Z}/k\mathbb{Z} \to \mathbb{Q} \). Since \(D_{n+1} \geq D_n \geq 0 \) for all \(n \), it follows that \(C_{h+1} \) is constant \(> 0 \).

Write \(Q(t) = Q_1(t) + Q_2(t) \), where \(Q_1(t) \) has coefficients of absolute value \(< Dn^h \) for a suitable constant \(D > 0 \) and

\[Q_2(t) = C_{h+1} \sum_{n \geq 0} n^{h+1}t^n. \]

Then, for \(0 < x < 1 \), we have
Therefore, \(Q_1(t) \) has a pole of order at most \(h + 1 \) at \(t = 1 \). Similarly, \(Q_2(t) \) has a pole of order exactly \(h + 2 \) at \(t = 1 \) and so the same holds for \(Q(t) \). This shows that \(P_G(V; t) \) has a pole of order \(h + 1 \) at \(t = 1 \), whence \(cr_G(V) = h + 1 = q \), as we have claimed.

Finally, if \(q(R) \) is defined in analogy with \(q = q(V) \) above, then Theorem 2 and the foregoing together imply that \(cr_G(V) = q(V) \leq q(R) = cr_G(R) \). This completes the proof.

Example 5. Suppose \(G \) does not contain any subgroup isomorphic to \(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \) and let the coefficient ring \(R \) be of characteristic \(p \). Then, by [4, Ch. X, §6], there exists a positive integer \(d \) such that \(H^n(G, V) \cong H^{n+d}(G, V) \) holds for any \(R[G] \)-module \(V \) and all \(n > h(G) \), the Hirsch number of \(G \). In particular, if \(V \) is finitely generated over \(R[G] \) and \(P_G(V; t) \) is as in the above corollary, then

\[
P_G(V; t) = \frac{f(t)}{1 - t^d}
\]

for some polynomial \(f(t) \in \mathbb{Z}[t] \) of degree \(\leq h(G) + d \). For concrete computations see Proposition 11.

We conclude this section with a brief discussion of the case where \(R = k \) is a commutative field. There are several notions of dimension for \(H^*(G, k) \) at our disposal. Namely, (i) the Gelfand-Kirillov dimension over \(k \) (see [3]), (ii) the prime length or classical Krull dimension of \(H^*(G, k) \), and (iii) the Gabriel-Rentschler Krull dimension [17]. However, using the fact that \(H^*(G, k) \) is a finitely generated module over the central subalgebra \(\bigoplus_{n=0}^\infty H^{2n}(G, k) \) which in turn is a finitely generated \(k \)-algebra, by Corollary 4(i) and the Artin-Tate lemma, it is easy to show that (i), (ii), and (iii) all coincide with \(cr_G(k) \). The following result of Quillen’s (again valid for \(G \) of type VFP over \(k \)) determines this number [15, Theorem 14.1].

Proposition 6 (Quillen). If \(\text{char} \ k = p \), then \(cr_G(k) \) equals the \(p \)-rank of \(G \), i.e. the largest integer \(r \) such that \(G \) contains an elementary abelian subgroup of order \(p^r \).

2. Relations with Goldie ranks

Throughout this section, \(G \) will be a polycyclic-by-finite group without finite normal subgroups \(\neq \langle 1 \rangle \). Thus, for any field \(k \), the group algebra \(k[G] \) is prime [14, Theorem 4.2.10]. If \(V \) is a finitely generated \(k[G] \)-module, then we let \(q(V) \) denote
its Goldie rank, i.e.,
$$
\varrho(V) = \varrho_G(V) = \text{composition length of } Q(k[G]) \otimes_{k[G]} V,
$$
where $Q(k[G])$ is the classical simple Artinian ring of quotients of $k[G]$. Furthermore, we define the normalized Goldie rank $\chi(V)$ of V to be
$$
\chi(V) = \chi_G(V) = \varrho(V) / \varrho(k[G]).
$$
Since $Q(k[G])$ is flat over $k[G]$, ϱ is additive on short exact sequences and hence χ is also additive. The following lemma describes some further properties of χ. Part (ii) is due to Rosset [16, Proposition 4] and will not be needed in the sequel.

Lemma 7. (i) Let V be a finitely generated $k[G]$-module and let $H \leq G$ be a subgroup of finite index. Then
$$
\chi_G(V) = [G : H]^{-1} \chi_H(V).
$$
(ii) Let $H \leq G$ be a subgroup of G with $k[H]$ prime and let W be a finitely generated $k[H]$-module. Then
$$
\chi_G(k[G] \otimes_{k[H]} W) = \chi_H(W).
$$

Proof of (i). Note that H has no finite normal subgroups. Choose a torsion-free normal subgroup N of G with $N \leq H$ and $[G : N]$ finite. We can clearly assume that $H = N$ so that H is normal in G and torsion-free.

Let \mathcal{E} denote the set of nonzero elements of $k[H]$. Since $k[H]$ is a Noetherian domain [9, 5], \mathcal{E} is an Ore set of regular elements in $k[H]$, and in $k[G]$ [14, proof of Lemma 13.3.5(ii)]. Moreover, $Q(k[G]) = \mathcal{E}^{-1}k[G] \supset \mathcal{E}^{-1}k[H] = Q(k[H])$, and $Q = Q(k[G])$ is simple Artinian and has (right and left) dimension $[G : H]$ over the division subring $D = Q(k[H])$. If V is a finitely generated $k[G]$-module, then $Q \otimes_{k[G]} V$ is finitely generated over Q and hence of the form $Q \otimes_{k[G]} V \cong B(r)$, where B is a simple left ideal of Q and $r = \varrho(V)$. In particular, $Q \cong B(s)$ with $s = \varrho(k[G])$ and so we have
$$
\dim_D B = \frac{1}{s} \dim_D Q = [G : H] / s.
$$
Therefore, $\chi_G(V) = r / s = [G : H]^{-1} \dim_D (Q \otimes_{k[G]} V)$. To complete the proof, note that $Q \otimes_{k[G]} V \cong D \otimes_{k[H]} V$ as D-modules, since $Q = \mathcal{E}^{-1}k[G] \cong D \otimes_{k[H]} k[G]$, and so $\dim_D (Q \otimes_{k[G]} V) = \varrho_H(V) = \chi_H(V)$. \[\square\]

The following proposition gives a cohomological description of $\chi_G(V)$ in certain situations where V has finite projective dimension.

Proposition 8. Let V be a finitely generated $k[G]$-module and set $h = h(G)$, the Hirsch number of G. Assume that either
(i) V has a finite free resolution, or
(ii) G is torsion-free.

Then
\[\chi_G(V) = \sum_{i \geq 0} (-1)^i \dim_k H_i(G, V) \]
\[= (-1)^{\text{dim}_k H^h(G, V)} \]

Proof. For any finitely generated $k[G]$-module W with $H_i(G, W) = 0$ and $H^i(G, W) = 0$ for $i > 0$ set
\[\phi_G(W) = \sum_{i \geq 0} (-1)^i \dim_k H_i(G, W) \]
and
\[\psi_G(W) = \sum_{i \geq 0} (-1)^i \dim_k H^i(G, W). \]

Note that ϕ_G and ψ_G are additive on short exact sequences of finitely generated $k[G]$-modules with finite homology and cohomology.

(i) Since χ_G, ϕ_G, and ψ_G are additive, it suffices to consider the case where $V = k[G]$. Then
\[\chi_G(k[G]) = 1 = \dim_k H_0(G, k[G]) = \phi_G(k[G]). \]

Moreover, if $H \leq G$ is a torsion-free subgroup of finite index in G, then, by [2, Satz 3.1.2] and [4, Ch. VIII, Theorem 10.1],
\[H^i(G, k[G]) = H^i(H, k[H]) = \begin{cases} 0 & \text{for } i \neq h, \\ k & \text{for } i = h. \end{cases} \]

Therefore, \((-1)^h \psi_G(k[G]) = \dim_k H^h(G, k[G]) = 1 = \phi_G(k[G]) = \chi_G(k[G])\), and (i) follows.

(ii) Since $k[G]$ has finite global dimension, we may assume that V is finitely generated projective. Fix an orientable poly-(inf'mite cyclic) normal subgroup $H \leq G$ of finite index in G. Then, by the theorem of Cliff, Farkas and Snider ([14, proof of Theorem 13.4.18] and [5, proof of Theorem 1]), we have
\[\phi_H(V) = \dim_k V/\omega(k[H]) \cdot V = [G : H] \dim_k V/\omega(k[G]) \cdot V \]
\[= [G : H] \phi_G(V). \]

Here, $\omega(\cdot)$ denotes the augmentation ideal. Furthermore, by [2, Satz 3.1.2] again, we have, with the usual twisting $\tilde{k} = H^h(G, k[G])$ of k,
\[H^i(G, V) \cong H_{n-i}(G, \tilde{k} \otimes_k V) = 0 \quad \text{for } i \neq h, \]
because $\tilde{k} \otimes_k V$ is also projective over $k[G]$. Thus
\[(-1)^h \psi_G(V) = \dim_k H^h(G, V) = \phi_G(\tilde{k} \otimes_k V), \]
and the foregoing implies that
On the cohomology of polycyclic-by-finite groups

\[(-1)^h [G : H] \psi_G(V) = [G : H] \phi_G(\bar{k} \otimes_k V) = \phi_H(\bar{k} \otimes_k V) = (-1)^h \psi_H(V). \]

Finally, by the 'twisted Grothendieck theorem' [14, Theorem 13.4.9], \(V|_{k[H]} \) is stably free, and so part (i) implies that

\[\chi_H(V) = \phi_H(V) = (-1)^h \psi_H(V). \]

As \(\chi_H(V) = [G : H] \chi_G(V) \), by Lemma 7(i), part (ii) is proved. \(\square \)

Corollary 9. Let \(V \) be a finitely generated \(k[G] \)-module and let \(h = h(G) \) denote the Hirsch number of \(G \). Then, for any torsion-free subgroup \(H \leq G \) of finite index in \(G \), we have

\[
\begin{align*}
\chi_G(V) &= [G : H]^{-1} \sum_{i \geq 0} (-1)^i \dim_k H_i(H, V) \\
&= (-1)^h [G : H]^{-1} \sum_{i \geq 0} (-1)^i \dim_k H^i(H, V).
\end{align*}
\]

Proof. This follows from Lemma 7(i) and Proposition 8(ii). \(\square \)

Using the notation \(P_G(V; t) = \sum_{i \geq 0} \dim_k H^i(G, V) t^i \) introduced in Corollary 4, the second equality in the above corollary can be expressed as

\[\chi_G(V) = (-1)^h [G : H]^{-1} P_H(V; -1). \]

Similarly, Proposition 8(i) states that

\[\chi_G(V) = (-1)^h P_G(V; -1) \]

in case \(V \) has a finite free resolution over \(k[G] \).

Lemma 10. Let \(0 \rightarrow U \rightarrow F \rightarrow V \rightarrow 0 \) be an exact sequence of finitely generated \(k[G] \)-modules and assume that \(H^i(G, F) = 0 \) \((i \gg 0) \). Then \(P_G(V; t) \) is defined at \(t = -1 \) if and only if this holds for \(P_G(U; t) \) and, in this case,

\[P_G(V; -1) + P_G(U; -1) = P_G(F; -1). \]

Proof. Let \(M_i \subset H^i(G, U) \) denote the kernel of \(H^i(G, U) \rightarrow H^i(G, F) \). Then the cohomology sequence yields

\[\dim_k H^i(G, U) + \dim_k H^i(G, V) = \dim_k H^i(G, F) + \dim_k M_i + \dim_k M_{i+1} \]

for all \(i \geq 0 \). Therefore, in \(\mathbb{Z}[t] \), we have

\[P_G(U; t) + P_G(V; t) = P_G(F; t) + \sum_{i \geq 0} (\dim_k M_i + \dim_k M_{i+1}) t^i \]

\[= P_G(F; t) + M(t)(t + 1), \]
where we have set $M(t) = \sum_{i \geq 0} \dim_k M_{i+1} t^i \in \mathbb{Z}[t]$. If $H^i(G, F) = 0$ for $i > n$, say, then $M_{i+1} = H^{i+1}(G, U) = H^i(G, V)$ for $i > n$ and so $t \cdot P_G(V; t) = t \cdot M(t) + f = P_G(U; t) + g$ for suitable polynomials $f, g \in \mathbb{Z}[t]$. This shows that if one of $P_G(V; t)$, $P_G(U; t)$, or $M(t)$ is defined at $t = -1$, then so are the other two and, substituting $t = -1$ in the above equation, we get $P_G(U; -1) + P_G(V; -1) = P_G(F; -1)$. □

As an application of the foregoing we offer the following result which deals with $k[G]$-modules of infinite projective dimension. Recall our general convention in this section: G has no non-trivial finite normal subgroups.

Proposition 11. Suppose G as a torsion-free normal subgroup H such that G/H is finite cyclic and let $h = h(G)$ denote the Hirsch number of G.

(i) Let V be a finitely generated $k[G]$-module such that $V|_{k[H]}$ is projective. Set $\bar{V} = \bar{k} \otimes_k V$, where $\bar{k} = H^h(G, k[G])$ as usual, and $\bar{V} = \bar{V}/\omega(k[H]) \cdot \bar{V}$. Then

$$P_G(V; t) = t^h \left(\dim_k \bar{V}^{G/H} + \frac{t}{1 - t^2} (\dim_k H^1(G/H, \bar{V}) + \dim_k H^2(G/H, \bar{V}) t) \right).$$

(ii) Suppose $\text{char } k = 2$ and G/H has order 2. Then $P_G(V; -1)$ is defined for all finitely generated $k[G]$-modules V, and $P_G(V; -1) = (-1)^h \chi_G(V)$.

Proof. (i) We have $H^i(H, V) = H_{h-i}(H, \bar{V}) = 0$ for $i \neq h$, since \bar{V} is projective over $k[H]$. The LHS-spectral sequence for $1 \to H \to G \to G/H \to 1$ implies that $H^i(G, V) = 0$ for $i < h$ and $H^i(G, V) = H^{i-h}(G/H, H^h(H, V)) = H^{i-h}(G/H, \bar{V})$ for $i \geq h$. Using the fact that G/H is cyclic, we obtain

$$P_G(V; t) = t^h \left(\dim_k \bar{V}^{G/H} + \sum_{i \geq 1} \dim_k H^i(G/H, \bar{V}) t^i \right) = t^h \left(\dim_k \bar{V}^{G/H} + \frac{t}{1 - t^2} (\dim_k H^1(G/H, \bar{V}) + \dim_k H^2(G/H, \bar{V}) t) \right),$$

as we have claimed.

(ii) Let $0 \to U \to F \to V \to 0$ be an exact sequence of $k[G]$-modules with F finitely generated free. Then $P_G(F; -1) = (-1)^h \chi_G(F)$, by Proposition 8(i), and Lemma 10 implies that $P_G(V; -1)$ is defined at $t = -1$ and equals $(-1)^h \chi_G(V)$ if and only if the corresponding fact holds for $P_G(U; -1)$. Thus, arguing by induction on the projective dimension of $V|_{k[H]}$, we may assume that $V|_{k[H]}$ is projective. But then part (i) implies that

$$P_G(V; -1) = t^h \left(\dim_k \bar{V}^{G/H} + \frac{t}{1 - t} \dim_k H^1(G/H, \bar{V}) \right),$$

where we have used the notation of (i) and the fact that, for G/H of order 2 and $\text{char } k = 2$, $H^1(G/H, W) = H^2(G/H, W)$ holds for all $k[G/H]$-modules W.

Therefore, $P_G(V; -1)$ is defined and, moreover,

$$P_G(V; -1) = (-1)^h \dim_k \tilde{V}^G/H - \frac{1}{2} \dim_k \tilde{V}^G/H/\omega(k[G/H], \tilde{V})$$

$$= (-1)^{\frac{h}{2}} \dim_k \tilde{V}.$$

To see the latter equality, note that \tilde{V} has the form $\tilde{V} = k[G/H]^r \oplus k^s$ for suitable $r, s \geq 0$, where k denotes the trivial module. Thus $\dim_k \tilde{V}^G/H = r + s$, $\dim_k \tilde{V}^G/H/\omega(k[G/H]) \cdot \tilde{V} = s$ and so the expression in brackets equals $r + \frac{1}{2}s = \frac{1}{2} \dim_k \tilde{V}$. Finally, by Corollary 9,

$$\chi_G(\tilde{V}) = \frac{1}{2} \dim_k H_0(H, \tilde{V}) = \frac{1}{2} \dim_k \tilde{V}$$

and so it suffices to show that $\chi_G(\tilde{V}) = \chi_G(V)$. But if N denotes the kernel of the action of H on \tilde{K}, then N has index at most 2 in H and the restrictions of \tilde{V} and V to $k[N]$ are isomorphic. Lemma 7(i) now implies that $\chi_G(\tilde{V}) = \chi_G(V)$, as required. \Box

Acknowledgement

Research supported by the Deutsche Forschungsgemeinschaft/Heisenberg Programm. The present version of this article was written while the author was visiting the University of Leeds. He thanks the members of the School of Mathematics for their hospitality, and the United Kingdom S.E.R.C. for its financial support. Thanks are also due to the referee whose valuable suggestions lead to substantial improvements in Section 2.

References