1. (Parts of the following have been noted in class, but not proved in detail.) Let \(K \) be a field.
 (i) Prove that the intersection of all of the subfields of \(K \) is itself a subfield of \(K \), called the prime subfield of \(K \).
 (ii) Let \(F \) denote the prime subfield of \(K \). Prove that \(F \) is isomorphic to either \(\mathbb{Q} \) or \(\mathbb{Z}_p \), for some prime number \(p \). We say in the first case that \(K \) has characteristic zero and in the second case that \(K \) has characteristic \(p \).
 (iii) Let \(V \) be a finite-dimensional vector space over \(\mathbb{Z}_p \). Prove there exists a prime number \(p \), and a positive integer \(\ell \), such that \(|V| = p^\ell \).
 (iv) Suppose \(K \) is finite. Prove that \(|K| \) is a power of a prime.

2. Let \(R \) be an integral domain containing a field \(K \) as a unital subring. (a) Prove that \(R \) is a \(K \)-vector space (using addition and multiplication in \(R \)). (b) Suppose that \(R \) is finite dimensional as a \(K \)-vector space. Prove that \(R \) is a field.

3. Let \(L \) be a finite field extension of a field \(K \), and let \(R \) be a unital subring of \(L \) that contains \(K \) as a unital subring. Prove that \(R \) is a field.

4. Set \(L = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \), a subfield of \(\mathbb{R} \).
 (i) Prove that \(\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \) and \(\mathbb{Q}(\sqrt{6}) \) are distinct subfields of \(L \).
 (ii) Show that \(\mathbb{Q}(\sqrt{2}) \not\subseteq L, \mathbb{Q}(\sqrt{3}) \not\subseteq L, \) and \(\mathbb{Q}(\sqrt{6}) \not\subseteq L \).
 (iii) Show that \(\mathbb{Q}(\sqrt{2}) \cap \mathbb{Q}(\sqrt{3}) = \mathbb{Q}(\sqrt{6}) \cap \mathbb{Q}(\sqrt{3}) = \mathbb{Q}(\sqrt{6}) \cap \mathbb{Q}(\sqrt{2}) = \mathbb{Q} \).
 (v) Determine \([L : \mathbb{Q}]\) and justify your result.

5. Let \(F \subseteq K \subseteq L \) be a tower of field extensions; that is, \(K \) is a (not necessarily finite) field extension of \(F \), and \(L \) is a (not necessarily finite) field extension of \(K \). Suppose that \(K \) is algebraic over \(F \) and that \(L \) is algebraic over \(K \). Prove that \(L \) is algebraic over \(F \).