1. Let K be a field, and let σ be an automorphism of K. Prove that σ pointwise fixes (i.e., restricts to the identity on) the prime subfield of K.

2. Consider the subfield,
 \[K = \mathbb{Q}(\sqrt{2}) = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}, \]
 of \mathbb{R}. (i) Show that the assignment
 \[a + b\sqrt{2} \mapsto a - b\sqrt{2}, \]
 for $a, b \in \mathbb{Q}$, produces an automorphism σ of K.
 (ii) Prove that σ and the identity map are the only automorphisms of K.
 (iii) What is the group of automorphisms of K?

3. (Some of the following has been discussed in class, but without detailed proof.) Let L be a finite field extension of K.
 (i) Prove that there exists a finite set \(\{ f_1(x), \ldots, f_m(x) \} \) of polynomials in $K[x]$ such that $L = K(\alpha_1, \ldots, \alpha_n)$, where $S = \{ \alpha_1, \ldots, \alpha_n \}$ is the set of all roots in L of the $f_1(x), \ldots, f_m(x)$.
 (ii) Retaining the notation from (i), prove that every automorphism of L fixing K restricts to a permutation of the set S; let $\text{Sym}(S)$ denote the group of permutations of S.
 (iii) Prove that the map $\Phi : \text{Aut}(L/K) \to \text{Sym}(S)$, sending each automorphism $\sigma \in \text{Aut}(L/K)$ to the restriction map $\sigma|_S$, is a group homomorphism.
 (iii) Prove that Φ is injective. (That is, prove that two automorphisms of L over K whose restrictions to permutations of S coincide must be equal to each other.) Conclude that $\text{Aut}(L/K)$ is isomorphic to a subgroup of $\text{Sym}(S)$.

4. Let L be a field extension of a field K. If $\alpha \in L$ is algebraic over K, then we refer to the degree of the minimal polynomial for α over K as the degree of α over K. Now suppose that $L = K(\alpha_1, \ldots, \alpha_n)$, for elements $\alpha_1, \ldots, \alpha_n \in L$ algebraic over K, and further suppose that ℓ_1, \ldots, ℓ_n are the degrees, respectively, over K, for $\alpha_1, \ldots, \alpha_n$. Prove that
 \[[L : K] \leq \ell_1 \cdot \ell_2 \cdots \ell_n. \]

5. Determine the splitting field over \mathbb{Q} of $x^2 + x + 1$ and the corresponding automorphism group.

6. Let $\sqrt{2}$, $\sqrt[3]{2}$, and $\sqrt[5]{2}$ respectively denote the positive real 2nd, 3rd, and 5th roots of 2. Set $K = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \sqrt[5]{2})$. Prove that $[K : \mathbb{Q}] = 30$.