1. (Parts of the following have been noted in class, but not proved in detail.) Let K be a field.
 (i) Prove that the intersection of all of the subfields of K is itself a subfield of K, called the prime subfield of K.
 (ii) Let F denote the prime subfield of K. Prove that F is isomorphic to either \mathbb{Q} or \mathbb{Z}_p, for some prime number p. We say in the first case that K has characteristic zero and in the second case that K has characteristic p.
 (iii) Let V be a finite-dimensional vector space over \mathbb{Z}_p. Prove there exists a prime number p, and a positive integer ℓ, such that $|V| = p^\ell$.
 (iv) Suppose K is finite. Prove that $|K|$ is a power of a prime.

2. Let R be an integral domain containing a field K as a unital subring.
 (a) Prove that R is a K-vector space (using addition and multiplication in R).
 (b) Let a be a nonzero element of R. Show that the map
 \[R \xrightarrow{r \mapsto ar} R \]
 is an injective K-linear transformation and is an isomorphism if and only if r is invertible as an element of R.
 (c) Suppose that R is finite dimensional as a K-vector space. Prove that R is a field.

3. Let L be a finite field extension of a field K, and let R be a unital subring of L that contains K as a unital subring. Prove that R is a field.

4. Let L be a finite field extension of a field K. Prove that L is algebraic over K.
 (We discussed this in class but without a formal proof.) Hint: First show that $K(\gamma)$ is a finite field extension of K for all $\gamma \in L$.

5. Let $F \subseteq K \subseteq L$ be a tower of field extensions; that is, K is a (not necessarily finite) field extension of F, and L is a (not necessarily finite) field extension of K. Suppose that K is algebraic over F and that L is algebraic over K. Prove that L is algebraic over F. Hint: Consider (4) and its solution.