1. Compute $2^{2r} \pmod{3}$, for all positive integers r.

2. Prove that $([a] + [b])^2 = [a]^2 + [b]^2$, for all $[a], [b] \in \mathbb{Z}_2$.

3. Let t be an integer, and let n be a positive integer. Prove that

 $\mathbb{Z}_n := \{[0], [1], \ldots, [n-1]\} = \{[t], [t+1], \ldots, [t+(n-1)]\}$.

 For the remainder let n be a positive integer. When the context is clear we refer to $[0]$ in \mathbb{Z}_n simply as zero, and we say (no surprise) that an element of \mathbb{Z}_n not equal to $[0]$ is nonzero. If r is an integer such that $[r]$ in \mathbb{Z}_n is nonzero, then we say that $[r]$ is a zero divisor in \mathbb{Z}_n provided there exists an integer s such that $[s]$ is nonzero and $[r][s] = [s][r] = [0]$, and we say that $[r]$ is invertible in \mathbb{Z}_n provided there exists an integer u such that $[r][u] = [u][r] = [1]$.

4. Let r be an integer. Prove that $[r]$ in \mathbb{Z}_n cannot be both a zero divisor and invertible.

5. For this problem, recall from class or the text the proposition stating that two nonzero integers a and b are relatively prime if and only if there exist integers u and v such that $au + bv = 1$. Now let r be an integer such that $[r]$ is nonzero in \mathbb{Z}_n. Prove that $[r]$ is invertible in \mathbb{Z}_n if and only if r and n are relatively prime.