1. Let N_α, for α in some index set I, be a family of normal subgroups of a group G. Prove that

$$\bigcap_{\alpha \in I} N_\alpha$$

is also a normal subgroup of G. (You may use the following characterization of normality proved in class: A subgroup N of G is normal if and only if $gng^{-1} \in N$ for all $n \in N$ and $g \in G$.)

2. Let N be a subgroup of a group G, and suppose that N is generated by the set S. Prove: If $gsg^{-1} \in N$ for all $s \in S$ and $g \in G$, then N is normal in G.

3. Let G be a group. The *commutator subgroup* of G, often denoted G', is the group generated by the set

$$\{aba^{-1}b^{-1} : a, b \in G\}.$$

Prove that G is abelian if and only if G' is equal to the trivial subgroup of G. Note: Elements of the form $aba^{-1}b^{-1}$, for $a, b \in G$, are referred to as *commutators*.

4. Let G be a group. Prove that the commutator subgroup G' is a normal subgroup of G.

5. Calculate the commutator subgroup of S_3. Note that this will be the smallest subgroup of S_3 containing all of the commutators. It may also be useful for you to note that a commutator in S_3 has to be an even permutation.

6. Let $\varphi : G \to H$ be a surjective homomorphism of groups. Prove that H is abelian if and only if the commutator subgroup G' is contained in the kernel of φ.