Review of elementary mathematical reasoning and the writing of mathematical proofs.

1. Write the negations of the following statements, avoiding use of the word “not.”
 (a) “The integer \(n \) is odd and the integer \(3n \) is odd.”
 (b) “The integer \(n \) is odd only if \(3n \) is odd.”

2. Consider the following statement: “For all real numbers \(x \), there exists a positive integer \(N \) such that \(N - 1 \leq x^2 \leq N \).” Write the negation of this statement, avoiding use of the word “not.” (Notice that \(N - 1 \leq x^2 \leq N \) means \(N - 1 \leq x^2 \) AND \(x^2 \leq N \).

3. Let \(m \) be an integer. Prove: If \(m \) is odd then \(m^2 + 1 \) is even. (Note: For this homework assignment, your proofs should only use elementary integer arithmetic and the definitions that \(m \) is odd when \(m = 2k + 1 \) for some integer \(k \) and that \(m \) is even when \(m = 2\ell \) for some integer \(\ell \).)

4. Let \(m \) be an integer. Prove: If \(m^2 + 1 \) is odd then \(m \) is even.

5. Let \(m \) and \(n \) be integers, and suppose that \(m^2 + n^2 \) is odd. Prove that at least one of \(m \) or \(n \) must be odd.

6. Give a complete proof by induction that
 \[
 \sum_{i=1}^{n}(2i) = 2 + 4 + 6 + \cdots + 2n = n^2 + n
 \]
 for all positive integers \(n \). Make sure to clearly indicate your basis step and induction step.

7. Give a complete proof by induction that \(4^n > n^2 \) for all non-negative integers \(n \). Make sure to clearly indicate your basis step and induction step.