You may not consult in any form with any other person, except your instructor, while doing this take-home test.

1. If \(u \) solves the one dimensional wave equation \(u_{tt} - c^2 u_{xx} = e^x \) and \(u(x,0) = u_t(x,0) = 0 \), find \(u(1/2, 3/2) \).

2. If \(\alpha = (\alpha_1, \ldots, \alpha_n) \) is a constant vector, prove that \(u(x,t) = \exp(\pm i(\alpha \cdot x + k c t)) \) solves the wave equation \(u_{tt} - c^2 \Delta u = 0 \) provided \(|\alpha|^2 = k^2 \).

3. If \(E \) is a plane wave of the form
 \[
 E(x,y,z) = \left(0, a \cos\left(\omega\left(t - \frac{x \sin \alpha + z \cos \alpha}{c}\right)\right), 0\right),
 \]
 find the direction of propagation of the wave. Suppose \(E \) and \(B \) solve the Maxwell equations in vacuum, i.e., \(\rho = 0 \) and \(J = 0 \). Calculate the magnetic field \(B \).

4. If \(f \) is continuous in \(\Omega \) and the weak derivative \(D^i f \) is also continuous in \(\Omega \), then the ordinary derivative \(f_{x_i} \) exists and is continuous in \(\Omega \).
 HINT: enough to prove it in dimension one, that is, if
 \[
 \int_a^b f(x)g'(x) \, dx = - \int_a^b h(x)g(x) \, dx \tag{1}
 \]
 with \(f \) and \(h \) continuous and for all \(g \in C_0^\infty(a,b) \), then \(f'(x) = h(x) \) in \((a,b) \). Equation (1) is equivalent to
 \[
 \int_a^b \left(f(x) - \int_{s_0}^x h(t) \, dt\right)g'(x) \, dx = 0,
 \]
 so it is enough to show that if
 \[
 \int_a^b w(x)g'(x) \, dx = 0, \quad \forall g \in C_0^\infty(a,b) \tag{2}
 \]
 with \(w \) continuous, then \(w \) is constant in \((a,b) \). Now, if (2) holds then prove that
 \[
 \int_a^b w(x)g'(x) \, dx = 0 \text{ for all } g \text{ absolutely continuous with compact support in } (a,b) \text{ (take } \phi \text{ smooth with compact support in } [-1,1], \phi_\varepsilon(x) = e^{-1}\phi(x/\varepsilon) \text{ and take } \phi_\varepsilon \ast g \text{).}
 \]
 Then given \(a < a' < b' < b \), define \(g(x) = \int_{a'}^x \left(w(t) - \int_{a'}^{b'} w(s) \, ds\right) \, dt \), for \(a' \leq x \leq b' \), and \(g(x) = 0 \) outside \([a', b']\). Show that \(g \) is absolutely continuous. Notice that (2) holds if and only if \(\int_a^{b'} (w(x) - c)g'(x) \, dx = 0 \) with any constant \(c \). Then from this get that
 \[
 \int_{a'}^{b'} \left(w(x) - \int_{a'}^{b'} w(s) \, ds\right)^2 \, dx = 0.
 \]

5. Let \(f(x) = |x_1| \) in the unit ball \(B_1(0) \subset \mathbb{R}^n \). Show that \(f \) has weak derivatives of order \(\alpha \) for all \(|\alpha| \leq 1 \) and \(D^i f = \text{sign } x_1 \) and \(D^i f = 0 \) for \(i = 2, \ldots, n \).
6. Let \(f \in L^1_{\text{loc}}(\Omega) \), \(\Omega \) connected and \(D^\alpha f = 0 \) for all \(|\alpha| = 1\). Then \(f \) is constant in \(\Omega \).

7. Let \(x_1, \ldots, x_{k+1} \) be numbers and consider the Vandermonde determinant

\[
V(x_1, \ldots, x_{k+1}) = \det \begin{bmatrix}
1 & 1 & \cdots & 1 \\
x_1 & x_2 & \cdots & x_{k+1} \\
x_1^2 & x_2^2 & \cdots & x_{k+1}^2 \\
\vdots & \vdots & \ddots & \vdots \\
x_1^k & x_2^k & \cdots & x_{k+1}^k
\end{bmatrix}.
\]

We have that \(V(x_1, \ldots, x_{k+1}) = \prod_{1 \leq i < m \leq k+1} (x_m - x_i) \).

Let \(B = B_1(0) \) be the unit ball in \(\mathbb{R}^n \) and \(B^+ = \{ x \in B_1(0) : x_n > 0 \} \). Let \(f \in C^k(B^+) \), write \(x = (x', x_n) \) and define the extension

\[
\tilde{f}(x) = \begin{cases}
 f(x), & \text{for } x_n \geq 0 \\
 \sum_{i=1}^{k+1} a_i f \left(x', -\frac{x_n}{i} \right), & \text{for } x_n < 0,
\end{cases}
\]

where \(a_i, i = 1, \ldots, k+1 \), is the unique solution of the linear system

\[
\sum_{i=1}^{k+1} \left(-\frac{1}{i} \right)^s a_i = 1, \quad s = 0, \ldots, k.
\]

Prove that \(\tilde{f} \in C^k(B) \) and

\[
\|\tilde{f}\|_{W^{k,p}(B)} \leq C \|f\|_{W^{k,p}(B^+)}.
\]