Traces and boundary value problems for elliptic wedge operators1

Gerardo Mendoza
Temple University

joint work with
Thomas Krainer

University of Arkansas Spring Lecture Series, 2012

1Partially supported by NSF Grants DMS-0901173 and DMS-0901202
This talk reflects joint work, in progress, with T. Krainer of Penn State on boundary value problems for elliptic wedge operators.

I will:
– first describe in a rather abstract and general way what one ought to regard as boundary values for differential operators,
This talk reflects joint work, in progress, with T. Krainer of Penn State on boundary value problems for elliptic wedge operators.

I will:
– first describe in a rather abstract and general way what one ought to regard as boundary values for differential operators,
– then narrow down the problem to elliptic wedge operators,
This talk reflects joint work, in progress, with T. Krainer of Penn State on boundary value problems for elliptic wedge operators.

I will:
– first describe in a rather abstract and general way what one ought to regard as boundary values for differential operators,
– then narrow down the problem to elliptic wedge operators,
– then discuss boundary values (traces) as sections of a vector bundle.
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \mathcal{M}.
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \mathcal{M} or just an open set in \mathbb{R}^n.

Let $\mathcal{M} = \{x \in \mathbb{R}^2 : \|x\| \leq 1\}$ and $A = \Delta$ (Laplacian).
Boundary values

Suppose \(A \) is a linear differential operator with smooth coefficients on a manifold \(\mathcal{M} \) or just an open set in \(\mathbb{R}^n \).

Let \(\mathcal{M} = \{ x \in \mathbb{R}^2 : \| x \| \leq 1 \} \) and \(A = \Delta \) (Laplacian).
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \mathcal{M} or just an open set in \mathbb{R}^n. Let m be some smooth positive measure on \mathcal{M}, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\mathcal{M})$$

Let $\mathcal{M} = \{x \in \mathbb{R}^2 : \|x\| \leq 1\}$ and $A = \Delta$ (Laplacian).
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \mathcal{M} or just an open set in \mathbb{R}^n. Let m be some smooth positive measure on \mathcal{M}, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\mathcal{M})$$

This is an inner product. The completion of $C_c^\infty(\mathcal{M})$ is a subspace of $L^2(\mathcal{M}, m)$ called $D_{\text{min}}(A)$.

Let $\mathcal{M} = \{x \in \mathbb{R}^2 : \|x\| \leq 1\}$ and $A = \Delta$ (Laplacian).
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold $\hat{\mathcal{M}}$ or just an open set in \mathbb{R}^n. Let m be some smooth positive measure on $\hat{\mathcal{M}}$, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\hat{\mathcal{M}})$$

This is an inner product. The completion of $C_c^\infty(\hat{\mathcal{M}})$ is a subspace of $L^2(\hat{\mathcal{M}}, m)$ called $\mathcal{D}_{\text{min}}(A)$.

Let $\mathcal{M} = \{x \in \mathbb{R}^2 : \|x\| \leq 1\}$ and $A = \Delta$ (Laplacian).

$$\mathcal{D}_{\text{min}}(\Delta) = H_0^2(\hat{\mathcal{M}})$$
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \mathcal{M} or just an open set in \mathbb{R}^n. Let \mathfrak{m} be some smooth positive measure on \mathcal{M}, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\mathcal{M})$$

This is an inner product. The completion of $C_c^\infty(\mathcal{M})$ is a subspace of $L^2(\mathcal{M}, \mathfrak{m})$ called $\mathcal{D}_{\min}(A)$.

$A : \mathcal{D}_{\min}(A) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M})$ is closed.

Let $\mathcal{M} = \{x \in \mathbb{R}^2 : ||x|| \leq 1\}$ and $A = \Delta$ (Laplacian).

$\mathcal{D}_{\min}(\Delta) = H^2_0(\mathcal{M})$
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \mathcal{M} or just an open set in \mathbb{R}^n. Let \mathfrak{m} be some smooth positive measure on \mathcal{M}, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_\infty^c(\mathcal{M})$$

This is an inner product. The completion of $C_\infty^c(\mathcal{M})$ is a subspace of $L^2(\mathcal{M}, \mathfrak{m})$ called $\mathcal{D}_{\min}(A)$.

$$A : \mathcal{D}_{\min}(A) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M}) \text{ is closed.}$$

Elements of $\mathcal{D}_{\min}(A)$ in some sense vanish to large order on $\partial \mathcal{M}$.

Let $\mathcal{M} = \{x \in \mathbb{R}^2 : ||x|| \leq 1\}$ and $A = \Delta$ (Laplacian).

$$\mathcal{D}_{\min}(\Delta) = H_0^2(\mathcal{M})$$
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold $\hat{\mathcal{M}}$ or just an open set in \mathbb{R}^n. Let m be some smooth positive measure on $\hat{\mathcal{M}}$, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\hat{\mathcal{M}})$$

This is an inner product. The completion of $C_c^\infty(\hat{\mathcal{M}})$ is a subspace of $L^2(\hat{\mathcal{M}}, m)$ called $\mathcal{D}_{\min}(A)$.

$A : \mathcal{D}_{\min}(A) \subset L^2(\hat{\mathcal{M}}) \to L^2(\hat{\mathcal{M}})$ is closed.

Elements of $\mathcal{D}_{\min}(A)$ in some sense vanish to large order on $\partial \mathcal{M}$. "infinity"

Let $\mathcal{M} = \{x \in \mathbb{R}^2 : ||x|| \leq 1\}$ and $A = \Delta$ (Laplacian).

$\mathcal{D}_{\min}(\Delta) = H^2_0(\hat{\mathcal{M}})$
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \hat{M} or just an open set in \mathbb{R}^n. Let m be some smooth positive measure on \hat{M}, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\hat{M})$$

This is an inner product. The completion of $C_c^\infty(\hat{M})$ is a subspace of $L^2(\hat{M}, m)$ called $\mathcal{D}_{\text{min}}(A)$.

$A : \mathcal{D}_{\text{min}}(A) \subset L^2(\hat{M}) \to L^2(\hat{M})$ is closed.

Elements of $\mathcal{D}_{\text{min}}(A)$ in some sense vanish to large order on ∂M. A (usually) bigger natural space is

$\mathcal{D}_{\text{max}}(A) = \{u \in L^2(\hat{M}) : Au \in L^2(\hat{M})\}$

Let $\mathcal{M} = \{x \in \mathbb{R}^2 : ||x|| \leq 1\}$ and $A = \Delta$ (Laplacian).

$\mathcal{D}_{\text{min}}(\Delta) = H^2_0(\mathcal{M})$
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \mathcal{M} or just an open set in \mathbb{R}^n. Let m be some smooth positive measure on \mathcal{M}, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\mathcal{M})$$

This is an inner product. The completion of $C_c^\infty(\mathcal{M})$ is a subspace of $L^2(\mathcal{M}, m)$ called $\mathcal{D}_{\text{min}}(A)$. $A : \mathcal{D}_{\text{min}}(A) \subset L^2(\mathcal{M}) \rightarrow L^2(\mathcal{M})$ is closed.

Elements of $\mathcal{D}_{\text{min}}(A)$ in some sense vanish to large order on $\partial \mathcal{M}$. A (usually) bigger natural space is $\mathcal{D}_{\text{max}}(A) = \{ u \in L^2(\mathcal{M}) : Au \in L^2(\mathcal{M}) \}$

Everything you can possibly and reasonably include...
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \hat{M} or just an open set in \mathbb{R}^n. Let m be some smooth positive measure on \hat{M}, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\hat{M})$$

This is an inner product. The completion of $C_c^\infty(\hat{M})$ is a subspace of $L^2(\hat{M}, m)$ called $\mathcal{D}_{\text{min}}(A)$.

$A : \mathcal{D}_{\text{min}}(A) \subset L^2(\hat{M}) \to L^2(\hat{M})$ is closed.

Elements of $\mathcal{D}_{\text{min}}(A)$ in some sense vanish to large order on ∂M. A (usually) bigger natural space is

$$\mathcal{D}_{\text{max}}(A) = \{ u \in L^2(\hat{M}) : Au \in L^2(\hat{M}) \}$$

Everything you can possibly and reasonably include...
Boundary values

Suppose A is a linear differential operator with smooth coefficients on a manifold \hat{M} or just an open set in \mathbb{R}^n. Let \mathfrak{m} be some smooth positive measure on \hat{M}, define

$$(u, v)_A = (Au, Av) + (u, v), \quad u, v \in C_c^\infty(\hat{M})$$

This is an inner product. The completion of $C_c^\infty(\hat{M})$ is a subspace of $L^2(\hat{M}, \mathfrak{m})$ called $\mathcal{D}_{\text{min}}(A)$.

$A : \mathcal{D}_{\text{min}}(A) \subset L^2(\hat{M}) \to L^2(\hat{M})$ is closed.

Elements of $\mathcal{D}_{\text{min}}(A)$ in some sense vanish to large order on ∂M. A (usually) bigger natural space is

$\mathcal{D}_{\text{max}}(A) = \{u \in L^2(\hat{M}) : Au \in L^2(\hat{M})\}$

Nonzero boundary values (up to some order) are carried by elements in $\mathcal{D}_{\text{max}}(A)$ not in $\mathcal{D}_{\text{min}}(A)$.

Let $M = \{x \in \mathbb{R}^2 : \|x\| \leq 1\}$ and $A = \Delta$ (Laplacian).

$\mathcal{D}_{\text{min}}(\Delta) = H^2_0(\hat{M})$

$\mathcal{D}_{\text{max}}(\Delta) \neq H^2(\hat{M})$

In fact $\mathcal{D}_{\text{max}}(\Delta) \hookrightarrow L^2(M)$ is not compact!
\(\mathcal{D}_{\text{max}} = \{ u \in L^2(\mathcal{M}) : Au \in L^2(\mathcal{M}) \} \)

\[\| u \|_A^2 = \| Au \|^2 + \| u \|^2 \]

\(\mathcal{D}_{\text{max}} \) is complete, \(\mathcal{D}_{\text{min}} \) is the closure of \(C^\infty_c(\mathcal{M}) \).
Elements in \mathcal{D}_min vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of \mathcal{D}_max.

\[\mathcal{D}_\text{max} = \{ u \in L^2(\mathcal{M}) : Au \in L^2(\mathcal{M}) \} \]

\[\|u\|_A^2 = \|Au\|^2 + \|u\|^2 \]

\mathcal{D}_max is complete, \mathcal{D}_min is the closure of $C_c(\mathcal{M})$.
Elements in \mathcal{D}_{min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of \mathcal{D}_{max}. How do we get a hold on these?

$\mathcal{D}_{\text{max}} = \{ u \in L^2(\mathcal{M}^\circ) : Au \in L^2(\mathcal{M}) \}$

$\| u \|_A^2 = \| Au \|^2 + \| u \|^2$

\mathcal{D}_{max} is complete, \mathcal{D}_{min} is the closure of $C_c^\infty(\mathcal{M})$.
Elements in D_{\min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of D_{\max}. How do we get a hold on these?

$$\mathcal{E} = \text{ orthogonal of } D_{\min} \text{ in } D_{\max},$$
$$\pi_{\max} : D_{\max} \rightarrow D_{\max} \text{ orthogonal projection on } \mathcal{E}$$

If A is elliptic, applying π_{\max} is like taking traces (up to some order).

Pick $\chi \in C_c^{\infty}(\mathcal{M})$. If $u \in D_{\max}$, then $\chi u \in D_{\min}$.
Elements in D_{min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of D_{max}. How do we get a hold on these?

$$D_{\text{max}} = \{ u \in L^2(\mathcal{M}) : Au \in L^2(\mathcal{M}) \}$$

$$\|u\|_A = \|Au\|^2 + \|u\|^2$$

D_{max} is complete, D_{min} is the closure of $C_c^\infty(\mathcal{M})$

$$\mathcal{E} = \text{orthogonal of } D_{\text{min}} \text{ in } D_{\text{max}},$$

$$\pi_{\text{max}} : D_{\text{max}} \to D_{\text{max}} \text{ orthogonal projection on } \mathcal{E}$$

If A is elliptic, applying π_{max} is like taking traces (up to some order).

If A is elliptic and $Au \in L^2$ then $u \in H^m_{\text{loc}}$.

Pick $\chi \in C_c^\infty(\mathcal{M})$. If $u \in D_{\text{max}}$, then $\chi u \in D_{\text{min}}$

so $\pi_{\text{max}}(\chi u) = 0$.

For example, it may be that $D_{\text{min}} \hookrightarrow \to L^2$ is already compact. Then you would like to have $D \hookrightarrow \to L^2$ also compact and large enough that a parametrix exists and is a compact operator.
Elements in \mathcal{D}_{\min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of \mathcal{D}_{\max}. How do we get a hold on these?

\[\mathcal{E} = \text{orthogonal of } \mathcal{D}_{\min} \text{ in } \mathcal{D}_{\max}, \]

\[\pi_{\max}: \mathcal{D}_{\max} \to \mathcal{D}_{\max} \text{ orthogonal projection on } \mathcal{E} \]

If A is elliptic, applying π_{\max} is like taking traces (up to some order).

Pick $\chi \in C_c^\infty(\mathcal{M})$. If $u \in \mathcal{D}_{\max}$, then $\chi u \in \mathcal{D}_{\min}$ so $\pi_{\max}(\chi u) = 0$. Let $\omega = 1 - \chi$.

\[\omega = 1 \text{ "near } \infty." \]
Elements in D_{min} vanish to some order on ∂M. Nonvanishing boundary values (to some order) are produced by elements of D_{max}. How do we get a hold on these?

$$D_{\text{max}} = \{ u \in L^2(M) : Au \in L^2(M) \}$$

$$\|u\|_A^2 = \|Au\|^2 + \|u\|^2$$

D_{max} is complete, D_{min} is the closure of $C_c(\hat{M})$. Elements in D_{min} vanish to some order on ∂M. Nonvanishing boundary values (to some order) are produced by elements of D_{max}. How do we get a hold on these?

$$\mathcal{E} = \text{orthogonal of } D_{\text{min}} \text{ in } D_{\text{max}},$$

$$\pi_{\text{max}} : D_{\text{max}} \to D_{\text{max}} \text{ orthogonal projection on } \mathcal{E}$$

If A is elliptic, applying π_{max} is like taking traces (up to some order).

Pick $\chi \in C_c(\hat{M})$. If $u \in D_{\text{max}}$, then $\chi u \in D_{\text{min}}$ so $\pi_{\text{max}}(\chi u) = 0$. Let $\omega = 1 - \chi$. Then

$$\pi_{\text{max}}(\omega u) = \pi_{\text{max}}(u).$$

If A is elliptic and $Au \in L^2$, then $u \in H^m_{\text{loc}}$. If A is elliptic and $Au \in L^2$ then $u \in H^m_{\text{loc}}$. Traces and boundary value problems

Arkansas Spring Lecture Series
Elements in D_{\min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of D_{\max}. How do we get a hold on these?

$$D_{\max} = \{ u \in L^2(\dot{\mathcal{M}}) : \quad Au \in L^2(\dot{\mathcal{M}}) \}$$

$$\|u\|_A^2 = \|Au\|^2 + \|u\|^2$$

D_{\max} is complete, D_{\min} is the closure of $C_\infty^c(\mathcal{M})$

\[\mathcal{E} = \text{orthogonal of } D_{\min} \text{ in } D_{\max}, \]

$$\pi_{\max} : D_{\max} \rightarrow D_{\max} \text{ orthogonal projection on } \mathcal{E}$$

If A is elliptic, applying π_{\max} is like taking traces (up to some order).

Pick $\chi \in C_\infty^c(\dot{\mathcal{M}})$. If $u \in D_{\max}$, then $\chi u \in D_{\min}$ so $\pi_{\max}(\chi u) = 0$. Let $\omega = 1 - \chi$. Then

$$\omega = 1 \text{ “near } \infty.”$$

$$\pi_{\max}(\omega u) = \pi_{\max}(u).$$

$\pi_{\max}(u)$ depends on u only by the values of u arbitrarily close to $\partial \mathcal{M}$. If A is elliptic and $Au \in L^2$ then $u \in H^m_{\text{loc}}$.
Elements in D_{min} vanish to some order on ∂M. Nonvanishing boundary values (to some order) are produced by elements of D_{max}. How do we get a hold on these?

$$D_{\text{max}} = \{ u \in L^2(\hat{M}) : Au \in L^2(\hat{M}) \}$$
$$\| u \|_A^2 = \| Au \|_2^2 + \| u \|_2^2$$

D_{max} is complete, D_{min} is the closure of $C_L^\infty(\hat{M})$

$$\pi_{\text{max}} : D_{\text{max}} \to D_{\text{max}} \text{ orthogonal projection on } E$$

If A is elliptic, applying π_{max} is like taking traces (up to some order).

Pick $\chi \in C_L^\infty(\hat{M})$. If $u \in D_{\text{max}}$, then $\chi u \in D_{\text{min}}$ so $\pi_{\text{max}}(\chi u) = 0$. Let $\omega = 1 - \chi$. Then

$$\pi_{\text{max}}(\omega u) = \pi_{\text{max}}(u).$$

$\pi_{\text{max}}(u)$ depends on u only by the values of u arbitrarily close to ∂M.

Choosing a boundary condition corresponds to choosing a subspace $D \subset E$.

The problem is: Solve $Au = f \in L^2$, $u \in D_{\text{min}} + D$.

If A is elliptic and $Au \in L^2$ then $u \in H_m^{\text{loc}}$.

For example, it may be that $D_{\text{min}} \hookrightarrow \to L^2$ is already compact. Then you would like to have $D \to L^2$ also compact and large enough that a parametrix exists and is a compact operator.
Elements in \mathcal{D}_{\min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of \mathcal{D}_{\max}. How do we get a hold on these?

$$\mathcal{E} = \text{orthogonal of } \mathcal{D}_{\min} \text{ in } \mathcal{D}_{\max},$$

$$\pi_{\max} : \mathcal{D}_{\max} \rightarrow \mathcal{D}_{\max} \text{ orthogonal projection on } \mathcal{E}$$

If A is elliptic, applying π_{\max} is like taking traces (up to some order).

Pick $\chi \in C_c^\infty(\mathcal{M})$. If $u \in \mathcal{D}_{\max}$, then $\chi u \in \mathcal{D}_{\min}$ so $\pi_{\max}(\chi u) = 0$. Let $\omega = 1 - \chi$. Then

$$\pi_{\max}(\omega u) = \pi_{\max}(u).$$

$\pi_{\max}(u)$ depends on u only by the values of u arbitrarily close to $\partial \mathcal{M}$.

Choosing a boundary condition corresponds to choosing a subspace $D \subset \mathcal{E}$. The problem is: Solve $Au = f \in L^2$, $u \in \mathcal{D}_{\min} + D$.

Part of the problem is to find criteria for detecting good spaces D.

\[\mathcal{D}_{\max} = \{ u \in L^2(\mathcal{M}) : Au \in L^2(\mathcal{M}) \} \]

$$\|u\|_A^2 = \|Au\|^2 + \|u\|^2$$

\mathcal{D}_{\max} is complete, \mathcal{D}_{\min} is the closure of $C_c^\infty(\mathcal{M})$.
Elements in D_{\min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of D_{\max}. How do we get a hold on these?

\[
\mathcal{E} = \text{orthogonal of } D_{\min} \text{ in } D_{\max},
\]

\[
\pi_{\max} : D_{\max} \rightarrow D_{\max} \text{ orthogonal projection on } \mathcal{E}
\]

If A is elliptic, applying π_{\max} is like taking traces (up to some order).

Pick $\chi \in C^\infty_c(\mathcal{M})$. If $u \in D_{\max}$, then $\chi u \in D_{\min}$ so $\pi_{\max}(\chi u) = 0$. Let $\omega = 1 - \chi$. Then

\[
\pi_{\max}(\omega u) = \pi_{\max}(u).
\]

$\pi_{\max}(u)$ depends on u only by the values of u arbitrarily close to $\partial \mathcal{M}$.

Choosing a boundary condition corresponds to choosing a subspace $D \subset \mathcal{E}$.

The problem is: Solve $Au = f \in L^2$, $u \in D_{\min} + D$. of course!

Part of the problem is to find criteria for detecting good spaces D.

\[
D_{\max} = \{ u \in L^2(\mathcal{M}) : Au \in L^2(\mathcal{M}) \}
\]

\[
\| u \|_{A}^{2} = \| Au \|^{2} + \| u \|^{2}
\]

D_{\max} is complete, D_{\min} is the closure of $C^\infty_c(\mathcal{M})$.

If A is elliptic and $Au \in L^2$ then $u \in H^m_{\text{loc}}$.

For example, it may be that $D_{\min} \hookrightarrow \rightarrow L^2$ is already compact. Then you would like to have $D \hookrightarrow \rightarrow L^2$ also compact and large enough that a parametrix exists and is a compact operator.
Elements in \mathcal{D}_{min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of \mathcal{D}_{max}. How do we get a hold on these?

$$\mathcal{E} = \text{orthogonal of } \mathcal{D}_{\text{min}} \text{ in } \mathcal{D}_{\text{max}},$$

$$\pi_{\text{max}} : \mathcal{D}_{\text{max}} \to \mathcal{D}_{\text{max}} \text{ orthogonal projection on } \mathcal{E}$$

If A is elliptic, applying π_{max} is like taking traces

Pick $\chi \in C_c^\infty (\mathcal{M})$. If $u \in \mathcal{D}_{\text{max}}$, then $\chi u \in \mathcal{D}_{\text{min}}$

so $\pi_{\text{max}}(\chi u) = 0$. Let $\omega = 1 - \chi$. Then

$$\pi_{\text{max}}(\omega u) = \pi_{\text{max}}(u).$$

$\pi_{\text{max}}(u)$ depends on u only by the values of u arbitrarily close to $\partial \mathcal{M}$. Choosing a boundary condition corresponds to choosing a subspace $D \subset \mathcal{E}$.

The problem is: Solve $Au = f \in L^2$, $u \in \mathcal{D}_{\text{min}} + D$.

Part of the problem is to find criteria for detecting good spaces D.

\[\mathcal{D}_{\text{max}} = \{ u \in L^2(\mathcal{M}) : Au \in L^2(\mathcal{M}) \} \]

$$\| u \| _A = \| Au \| ^2 + \| u \| ^2$$

\mathcal{D}_{max} is complete, \mathcal{D}_{min} is the closure of $C_c^\infty (\mathcal{M})$.
Elements in \mathcal{D}_{min} vanish to some order on $\partial \mathcal{M}$. Nonvanishing boundary values (to some order) are produced by elements of \mathcal{D}_{max}. How do we get a hold on these?

$$\mathcal{E} = \text{orthogonal of } \mathcal{D}_{\text{min}} \text{ in } \mathcal{D}_{\text{max}}, \quad \pi_{\text{max}} : \mathcal{D}_{\text{max}} \to \mathcal{D}_{\text{max}} \text{ orthogonal projection on } \mathcal{E}$$

If A is elliptic, applying π_{max} is like taking traces.

Pick $\chi \in C^\infty_c(\mathcal{M})$. If $u \in \mathcal{D}_{\text{max}}$, then $\chi u \in \mathcal{D}_{\text{min}}$ so $\pi_{\text{max}}(\chi u) = 0$. Let $\omega = 1 - \chi$. Then $\pi_{\text{max}}(\omega u) = \pi_{\text{max}}(u)$.

$\pi_{\text{max}}(u)$ depends on u only by the values of u arbitrarily close to $\partial \mathcal{M}$.

Choosing a boundary condition corresponds to choosing a subspace $D \subset \mathcal{E}$.

The problem is: Solve $Au = f \in L^2, \ u \in \mathcal{D}_{\text{min}} + D$.

Part of the problem is to find criteria for detecting good spaces D. Of course!
Traces for elliptic wedge operators

Traces are a local issue, so we work on

\[\mathcal{M} = [0, \infty) \times \mathcal{Y} \times \mathcal{Z} \]

\(\mathcal{Z} \) is a compact \(n \)-manifold without boundary, \(\mathcal{Y} \) an open set in \(\mathbb{R}^q \)

near \(\partial \mathcal{M} = \{0\} \times \mathcal{Y} \times \mathcal{Z} \).
Traces for elliptic wedge operators

Traces are a local issue, so we work on

\[\mathcal{M} = [0, \infty) \times \mathcal{Y} \times \mathcal{Z} \]

near \(\partial \mathcal{M} = \{0\} \times \mathcal{Y} \times \mathcal{Z} \). The measure is \(m_b = \frac{1}{x} \, m \), \(m = dx \, dy \, m_z \),

the \(L^2 \) space is \(L^2(\mathcal{M}, x^m m_b) = x^{-m/2} L^2_b(\mathcal{M}) \),

\(\mathcal{Z} \) is a compact \(n \)-manifold without boundary, \(\mathcal{Y} \) an open set in \(\mathbb{R}^q \).
Traces for elliptic wedge operators

Traces are a local issue, so we work on

\[\mathcal{M} = [0, \infty) \times \mathcal{Y} \times \mathcal{Z} \]

near \(\partial \mathcal{M} = \{0\} \times \mathcal{Y} \times \mathcal{Z} \). The measure is \(m_b = \frac{1}{x} m \), \(m = dx \, dy \, m_{\mathcal{Z}} \), and the \(L^2 \) space is \(L^2(\mathcal{M}, x^m m_b) = x^{-m/2} L^2_b(\mathcal{M}) \), and the operator is

\[
A = \frac{1}{x^m} \sum_{k+|\alpha|+|\beta|\leq m} a_{k,\alpha,\beta}(x, y, z)(xD_x)^k(xD_y)^{\alpha} D_z^{\beta}
\]

\(a_{k,\alpha,\beta} \in C^\infty(\mathcal{M}) \)

\(\mathcal{Z} \) is a compact \(n \)-manifold without boundary, \(\mathcal{Y} \) an open set in \(\mathbb{R}^q \).
Traces for elliptic wedge operators

Traces are a local issue, so we work on
\[M = [0, \infty) \times Y \times Z \]
\(Z \) is a compact \(n \)-manifold without boundary, \(Y \) an open set in \(\mathbb{R}^q \).

near \(\partial M = \{0\} \times Y \times Z \). The measure is \(m_b = \frac{1}{x} m, m = dx \, dy \, m_Z \),
the \(L^2 \) space is \(L^2(M, x^m m_b) = x^{-m/2} L^2_b(M) \), and the operator is
\[A = \frac{1}{x^m} \sum_{k+|\alpha|+|\beta| \leq m} a_{k,\alpha,\beta}(x, y, z) (xD_x)^k (xD_y)^\alpha D_z^\beta \]
with
\[w_{\sigma}(A) = \sum_{k+|\alpha|+|\beta| = m} a_{k,\alpha,\beta}(x, y, z) \xi^k \eta^\alpha \zeta^\beta \]
invertible on \((\xi, \eta, \zeta) \neq 0\).
Traces for elliptic wedge operators

Traces are a local issue, so we work on
\[M = [0, \infty) \times Y \times Z \]

near \(\partial M = \{0\} \times Y \times Z \). The measure is \(m_b = \frac{1}{x} m \), \(m = dx \, dy \, m_Z \), the \(L^2 \) space is \(L^2(M, x^m m_b) = x^{-m/2} L^2_b(M) \), and the operator is
\[A = \frac{1}{x^m} \sum_{k+|\alpha|+|\beta| \leq m} a_{k,\alpha,\beta}(x, y, z)(xD_x)^k (xD_y)^\alpha D_z^\beta \]

with
\[w_\sigma(A) = \sum_{k+|\alpha|+|\beta| = m} a_{k,\alpha,\beta}(x, y, z) \xi^k \eta^\alpha \zeta^\beta \]
invertible on \((\xi, \eta, \zeta) \neq 0\).

Let
\[bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0, y, z)(xD_x)^k D_z^\beta \]

\[b\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0, y, z) \sigma^k D_z^\beta \]

\(\mathcal{Z} \) is a compact \(n \)-manifold without boundary, \(Y \) an open set in \(\mathbb{R}^q \)

\(a_{k,\alpha,\beta} \in C^\infty(M) \)

\(b\hat{P}_y(\sigma) \) is a family of elliptic operators on \(\mathcal{Z} \) depending smoothly on \(y, \sigma \), holomorphically in \(\sigma \in \mathbb{C} \).
The family of operators
\[\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z) \sigma^k D^\beta \]
on \mathbb{Z} is elliptic. For each \(y \),
\[\text{spec}_b(A_y) = \{ \sigma : \hat{P}_y(\sigma) \text{ is not invertible} \} \]
is a discrete set such that \(\text{spec}_b(A_y) \cap \{ \sigma : |\Im \sigma| < r \} \) is finite for each \(r \).
The family of operators
\[
\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta
\]
on \mathcal{Z} is elliptic. For each \(y \),

\[
\text{spec}_b(A_y) = \{ \sigma : \hat{P}_y(\sigma) \text{ is not invertible} \}
\]
is a discrete set such that \(\text{spec}_b(A_y) \cap \{ \sigma : |\Im \sigma| < r \} \) is finite for each \(r \).
The family of operators
\[\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta \]
on \mathcal{Z} is elliptic. For each \(y \),
\[\text{spec}_b(A_y) = \{ \sigma : \hat{P}_y(\sigma) \text{ is not invertible} \} \]
is a discrete set such that \(\text{spec}_b(A_y) \cap \{ \sigma : |\Im \sigma| < r \} \) is finite for each \(r \).

This is a standard result from the elliptic theory of \(b \)-operators.
The family of operators
\[\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta \]
on \mathcal{Z} is elliptic. For each \(y \),
\[\text{spec}_b(A_y) = \{ \sigma : \hat{P}_y(\sigma) \text{ is not invertible} \} \]
is a discrete set such that \(\text{spec}_b(A_y) \cap \{ \sigma : |\Im \sigma| < r \} \) is finite for each \(r \).
We let
\[\text{spec}_e(A) = \{(y, \sigma) : \sigma \in \text{spec}_b(A_y)\} \]
The family of operators

\[\hat{P}_y(\sigma) = \sum_{k+|\beta|\leq m} a_{k,0,\beta}(0,y,z)\sigma^k D^\beta_z \]

on \(\mathcal{Z} \) is elliptic. For each \(y \),

\[\text{spec}_b(A_y) = \{ \sigma : \hat{P}_y(\sigma) \text{ is not invertible} \} \]

is a discrete set such that \(\text{spec}_b(A_y) \cap \{ \sigma : |\Im \sigma| < r \} \) is finite for each \(r \).

We let

\[\text{spec}_e(A) = \{ (y, \sigma) : \sigma \in \text{spec}_b(A_y) \} \]

This set is relevant in that if \(u \in \mathcal{D}_{\text{max}}(A) \), then

\[\hat{u}(\sigma, y, z) = \int_{\Im \sigma = m/2} x^{-i\sigma} u(x, y, z) \frac{dx}{x} \, dy \, dz \]

is, for each \(y \), holomorphic in \(\Im \sigma > m/2 \),

This is a standard result from the elliptic theory of \(b \)-operators.
The family of operators

$$\hat{P}_y(\sigma) = \sum_{k + |\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta$$
on Z is elliptic. For each y,

$$\text{spec}_b(A_y) = \{ \sigma : \hat{P}_y(\sigma) \text{ is not invertible} \}$$
is a discrete set such that $\text{spec}_b(A_y) \cap \{ \sigma : |\Im \sigma| < r \}$ is finite for each r.

We let

$$\text{spec}_e(A) = \{ (y, \sigma) : \sigma \in \text{spec}_b(A_y) \}$$

This set is relevant in that if $u \in D_{\text{max}}(A)$, then

$$\hat{u}(\sigma, y, z) = \int_{\Im \sigma = m/2} x^{-i\sigma} u(x, y, z) \frac{dx}{x} \ dy \ dz$$
is, for each y, holomorphic in $\Im \sigma > m/2$, meromorphic in

$$\Sigma = \{ \sigma \in \mathbb{C} : -m/2 < \Im \sigma < m/2 \}$$
The family of operators
\[\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta \]
on \mathcal{Z} is elliptic. For each y,
\[\text{spec}_b(A_y) = \{\sigma : \hat{P}_y(\sigma) \text{ is not invertible}\} \]
is a discrete set such that $\text{spec}_b(A_y) \cap \{\sigma : |\Im \sigma| < r\}$ is finite for each r. We let
\[\text{spec}_e(A) = \{(y,\sigma) : \sigma \in \text{spec}_b(A_y)\} \]
This set is relevant in that if $u \in \mathcal{D}_{\max}(A)$, then
\[\hat{u}(\sigma, y, z) = \int_{\Im \sigma = m/2} x^{-i\sigma} u(x, y, z) \frac{dx}{x} \, dy \, dz \]
is, for each y, holomorphic in $\Im \sigma > m/2$, meromorphic in $\Sigma = \{\sigma \in \mathbb{C} : -m/2 < \Im \sigma < m/2\}$ with poles in
\[\{\sigma - i\vartheta \in \Sigma : \sigma \in \text{spec}_b(A_y) \cap \Sigma, \, \vartheta \in \mathbb{N}_0\}, \]
The family of operators
\[\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta \]
on \mathcal{Z} is elliptic. For each \(y\),
\[\text{spec}_b(A_y) = \{ \sigma : \hat{P}_y(\sigma) \text{ is not invertible} \} \]
is a discrete set such that \(\text{spec}_b(A_y) \cap \{ \sigma : |\Im \sigma| < r \} \) is finite for each \(r\).
We let
\[\text{spec}_e(A) = \{ (y,\sigma) : \sigma \in \text{spec}_b(A_y) \} \]
This set is relevant in that if \(u \in D_{\max}(A)\), then
\[\hat{u}(\sigma,y,z) = \int_{\Im \sigma = m/2} x^{-i\sigma} u(x,y,z) \frac{dx}{x} \, dy \, dz \]
is, for each \(y\), holomorphic in \(\Im \sigma > m/2\), meromorphic in \(\Sigma = \{ \sigma \in \mathbb{C} : -m/2 < \Im \sigma < m/2 \}\) with poles in
\[\{ \sigma - i\vartheta \in \Sigma : \sigma \in \text{spec}_b(A_y) \cap \Sigma, \vartheta \in \mathbb{N}_0 \}, \]
This is not quite true: For \(\sigma > -m/2\) not in the local regularity of \(\hat{u}(\sigma,y,z)\) increases with
\[\Im \sigma, \hat{u}(\sigma,y,z) \in H^\Im \sigma-m/2-\epsilon_{\text{loc}} \]
\[bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)(xD_x)^k D_z^\beta \]
on [0, \infty) \times \{y\} \times \mathcal{Z}
\[\mathcal{D}_{\text{min}}(bA_y) \]

\[bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)(xD_x)^k D_z^\beta \]

on \([0, \infty) \times \{y\} \times \mathcal{Z}\)
\[\mathcal{D}_{\text{max}}(bA_y) \mathcal{D}_{\text{min}}(bA_y) \]

\[
\frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)(xD_x)^k D_z^\beta
\]

on \([0, \infty) \times \{y\} \times \mathcal{Z}\)
For fixed y, the space $\mathcal{D}_{\text{max}}(bA_y)/\mathcal{D}_{\text{min}}(bA_y)$ is finite dimensional

$$
\frac{1}{x^m} \sum_{k+|\beta| \leq m} \frac{a_{k,0,\beta}(0,y,z)(xD_x)^k D_z^\beta}{k!} \\
\text{on } [0, \infty) \times \{y\} \times \mathcal{Z}
$$
For fixed y, the space $\mathcal{D}_{\text{max}}(bA_y)/\mathcal{D}_{\text{min}}(bA_y)$ is finite dimensional, isomorphic to the kernel, \mathcal{T}_y, of bA_y on the space of functions of the form

$$\sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_\sigma} a_{\sigma,\ell} x^{i\sigma} \log^\ell x$$

for some $a_{\sigma,\ell} \in C^\infty(\mathcal{Z})$ and some N_σ.

\[bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z) (xD_x)^k D_z^\beta \]

on $[0, \infty) \times \{y\} \times \mathcal{Z}$
For fixed y, the space $\mathcal{D}_{\max}(bA_y)/\mathcal{D}_{\min}(bA_y)$ is finite dimensional, isomorphic to the kernel, \mathcal{T}_y, of bA_y on the space of functions of the form
\[
\sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_\sigma} a_{\sigma,\ell} x^{i\sigma} \log^\ell x
\]
for some $a_{\sigma,\ell} \in C^\infty(\mathbb{Z})$ and some N_σ.

\[
bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)(xD_x)^k D_z^\beta
\]
on $[0, \infty) \times \{y\} \times \mathbb{Z}$

Example: (on $[0, \infty) \times \mathbb{R}$)
\[
\Delta = D_x^2 + D_y^2 = x^{-2}(x^2 D_x^2 + x^2 D_y^2)
\]
\[
b\Delta_y = x^{-2}(x^2 D_x^2) = D_x^2
\]
and so $\ker b\Delta_y = \text{span}_{\mathbb{C}}\{1, x\}$.

Theorem (The trace bundle of A_y).

Suppose $\text{spec}_e(A_y) \cap \{(y,\sigma) : \Im \sigma = \pm m/2\} = \emptyset$ then $T = \bigoplus_{y \in Y} T_y$ with the canonical map $\pi : T \to Y$ is a smooth vector bundle over Y. The space $C^\infty(Y; T)$ consists of all sections $u : Y \to T$ which viewed as functions of $(x,y,z) \in (0, \infty) \times Y \times \mathbb{Z}$ are smooth.
For fixed y, the space $\mathcal{D}_{\text{max}}(bA_y)/\mathcal{D}_{\text{min}}(bA_y)$ is finite dimensional, isomorphic to the kernel, \mathcal{T}_y, of bA_y on the space of functions of the form

$$a_{\sigma,\ell} x^{i\sigma} \log^\ell x$$

for some $a_{\sigma,\ell} \in C^\infty(\mathbb{Z})$ and some N_{σ}.

Example:

$$\Delta = D_x^2 + D_y^2 = x^{-2}(x^2 D_x^2 + x^2 D_y^2)$$

and so $\ker b\Delta_y = \text{span}_\mathbb{C}\{1, x\}$.

On the other hand

$$\mathcal{D}_{\text{min}}(b\Delta_y) = H_0^2(\mathbb{R}_+), \quad \mathcal{D}_{\text{max}}(b\Delta_y) = H^2(\mathbb{R}_+)$$

and $\mathcal{D}_{\text{max}}(b\Delta_y) / \mathcal{D}_{\text{min}}(b\Delta_y) \cong \text{span}\{1, x\}$.
For fixed \(y \), the space \(\mathcal{D}_{\text{max}}(bA_y)/\mathcal{D}_{\text{min}}(bA_y) \) is finite dimensional, isomorphic to the kernel, \(\mathcal{T}_y \), of \(bA_y \) on the space of functions of the form

\[
\sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_\sigma} a_{\sigma,\ell} x^{i\sigma} \log^\ell x
\]

for some \(a_{\sigma,\ell} \in C^\infty(\mathbb{Z}) \) and some \(N_\sigma \).

Theorem (The trace bundle of \(A \)).

Suppose

\[
\text{spec}_e(A) \cap \{(y, \sigma) : \Im \sigma = \pm m/2\} = \emptyset
\]

Then \(\mathcal{T} = \bigsqcup_{y \in \mathcal{Y}} \mathcal{T}_y \) with the canonical map \(\pi : \mathcal{T} \to \mathcal{Y} \) is a smooth vector bundle over \(\mathcal{Y} \). The space \(C^\infty(\mathcal{Y}; \mathcal{T}) \) consists of all sections \(u : \mathcal{Y} \to \mathcal{T} \) which viewed as functions of \((x, y, z) \in (0, \infty) \times \mathcal{Y} \times \mathcal{Z} \) are smooth.
For fixed y, the space $D_{\text{max}}(bA_y)/D_{\text{min}}(bA_y)$ is finite dimensional, isomorphic to the kernel, \mathcal{T}_y, of bA_y on the space of functions of the form

$$
\sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell = 0}^{N_\sigma} a_{\sigma,\ell} x^{i\sigma} \log^\ell x
$$

for some $a_{\sigma,\ell} \in C^\infty(\mathcal{Z})$ and some N_σ.

Theorem (The trace bundle of A).

Suppose

$$\text{spec}_e(A) \cap \{(y, \sigma) : \Im \sigma = \pm m/2\} = \emptyset$$

Then $\mathcal{T} = \bigsqcup_{y \in \mathcal{Y}} \mathcal{T}_y$ with the canonical map $\pi : \mathcal{T} \to \mathcal{Y}$ is a smooth vector bundle over \mathcal{Y}. The space $C^\infty(\mathcal{Y}; \mathcal{T})$ consists of all sections $u : \mathcal{Y} \to \mathcal{T}$ which viewed as functions of $(x, y, z) \in (0, \infty) \times \mathcal{Y} \times \mathcal{Z}$ are smooth.

$$\mathcal{B}^\infty_{bA}(\mathcal{Y}) = \{u \in C^\infty(\mathcal{Y}; \mathcal{T}) : \pi(u) = 0\}$$

Since $bA_y(\phi(y)u) = \phi(y) bA_y(u)$, $\mathcal{B}^\infty_{bA}(\mathcal{Y})$ is a module over $C^\infty(\mathcal{Y})$.

\begin{align*}
\Delta &= D_x^2 + D_y^2 = x^{-2}(x^2 D_x^2 + x^2 D_y^2) \\
b\Delta_y &= x^{-2}(x^2 D_x^2) = D_x^2
\end{align*}

and so $\ker b\Delta_y = \text{span}_C \{1, x\}$.

On the other hand

$$D_{\text{min}}(b\Delta_y) = H^2_0(\mathbb{R}_+), \quad D_{\text{max}}(b\Delta_y) = H^2(\mathbb{R}_+)$$

and $D_{\text{max}}(b\Delta_y)/D_{\text{min}}(b\Delta_y) \cong \text{span}\{1, x\}$.
Suppose
\[\text{spec}_e(A) \cap \{(y, \sigma) : \Re \sigma \neq \pm m/2\} \]
Then \(\mathcal{T} = \bigcup_{y \in Y} \mathcal{T}_y \) is a smooth vector bundle over \(Y \), and
\[C^\infty(Y; \mathcal{T}) = \{ \text{all sections } u : Y \to \mathcal{T} \text{ which viewed as functions on } (0, \infty) \times Y \times Z \text{ are smooth} \}. \]
Suppose
\[\text{spec}_e(A) \cap \{(y, \sigma) : \Im \sigma \neq \pm m/2 \} \]
Then \(\mathcal{T} = \bigcup_{y \in \mathcal{Y}} \mathcal{T}_y \) is a smooth
vector bundle over \(\mathcal{Y} \), and
\[C^\infty(\mathcal{Y}; \mathcal{T}) = \{ \text{all sections} \ u : \mathcal{Y} \to \mathcal{T} \text{ which viewed as functions} \]
on \((0, \infty) \times \mathcal{Y} \times \mathcal{Z} \text{ are smooth} \}. \]
\[\mathcal{T}_y = \ker A_y \text{ on} \]
\[\left\{ \sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_{\sigma}} a_{\sigma, \ell} x^{i\sigma} \log^\ell x \right\} \]
\(-m/2 < \Im \sigma < m/2\)
Suppose \(\text{spec}_e(A) \cap \{(y, \sigma) : \Im \sigma \neq \pm m/2\} \)

Then \(\mathcal{T} = \bigcup_{y \in \mathcal{Y}} \mathcal{T}_y \) is a smooth vector bundle over \(\mathcal{Y} \), and

\[
\mathcal{C}^\infty_b^{\infty}(\mathcal{Y}) = \{\text{all sections} \ u : \mathcal{Y} \to \mathcal{T} \text{ which viewed as functions on } (0, \infty) \times \mathcal{Y} \times \mathbb{Z} \text{ are smooth}\}.
\]

\(\mathcal{T}_y = \ker A_y \) on

\[
\{ \sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_\sigma} a_{\sigma, \ell} x^{i\sigma} \log^\ell x \}
\]

such that for any \(\phi \in \mathcal{B}_b^{\infty}(U) \) there are unique elements \(f^k \in C^\infty(U) \)

with which

\[
\phi = \sum f^k \phi_k.
\]
Suppose
\[\text{spec}_e(A) \cap \{(y, \sigma) : \Im \sigma \neq \pm m/2\} \]
Then \(\mathcal{T} = \bigcup_{y \in \mathcal{Y}} \mathcal{T}_y \) is a smooth vector bundle over \(\mathcal{Y} \), and
\[C^\infty_B(\mathcal{Y}) = \{ \text{all sections} \ u : \mathcal{Y} \to \mathcal{T} \text{ which viewed as functions} \}
\[\text{on } (0, \infty) \times \mathcal{Y} \times \mathcal{Z} \text{ are smooth} \}. \]
\[\mathcal{T}_y = \ker A_y \text{ on } \]
\[\left\{ \sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_\sigma} a_{\sigma, \ell} x^{i\sigma} \log^\ell x \right\} \]
\[-m/2 < \Im \sigma < m/2 \]

The proof consists of showing that every \(y_0 \in \mathcal{Y} \) has a neighborhood \(U \subset \mathcal{Y} \) for which there are elements
\[\phi_k \in B^\infty_B(U) \quad k = 1, \ldots, d \]
such that for any \(\phi \in B^\infty_B(U) \) there are unique elements \(f^k \in C^\infty(U) \) with which
\[\phi = \sum f^k \phi_k. \]
Declaring the \(\phi_k \) to be a frame over \(U \) gives the smooth vector bundle structure:
The proof consists of showing that every \(y_0 \in \mathcal{Y} \) has a neighborhood \(U \subset \mathcal{Y} \) for which there are elements

\[\phi_k \in \mathcal{B}_b^\infty(A)(U) \quad k = 1, \ldots, d \]

such that for any \(\phi \in \mathcal{B}_b^\infty(A)(U) \) there are unique elements \(f^k \in C^\infty(U) \) with which

\[\phi = \sum f^k \phi_k. \]

Declaring the \(\phi_k \) to be a frame over \(U \) gives the smooth vector bundle structure:

If \(\psi_\ell \in \mathcal{B}_b^\infty(U) \) is another such choice, then

\[\phi_k = \sum g^\ell_k \psi_\ell \]
Suppose \(\text{spec}_e(A) \cap \{(y, \sigma) : \Re \sigma \neq \pm m/2 \} \)

Then \(\mathcal{T} = \bigcup_{y \in \mathcal{Y}} \mathcal{T}_y \) is a smooth vector bundle over \(\mathcal{Y} \), and

\[
\mathcal{C}^\infty_b(A) = \{ \text{all sections} \ u : \mathcal{Y} \to \mathcal{T} \text{ which viewed as functions on } (0, \infty) \times \mathcal{Y} \times \mathcal{Z} \text{ are smooth} \}.
\]

\[\mathcal{T}_y = \ker A_y \]
on

\[
\{ \sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_{\sigma}} a_{\sigma, \ell} x^{i\sigma} \log^{\ell} x \}
\]

The proof consists of showing that every \(y_0 \in \mathcal{Y} \) has a neighborhood \(U \subset \mathcal{Y} \) for which there are elements \(\phi_k \in \mathcal{B}_b^\infty(U) \)

such that for any \(\phi \in \mathcal{B}_b^\infty(U) \) there are unique elements \(f^k \in C^\infty(U) \)

with which

\[
\phi = \sum f^k \phi_k.
\]

Declaring the \(\phi_k \) to be a frame over \(U \) gives the smooth vector bundle structure:

If \(\psi_\ell \in \mathcal{B}_b^\infty(U) \) is another such choice, then

\[
\phi_k = \sum g_k^\ell \psi_\ell
\]

\[
\psi_\ell = \sum f_\ell^m \phi_m
\]
The proof consists of showing that every $y_0 \in \mathcal{Y}$ has a neighborhood $U \subset \mathcal{Y}$ for which there are elements
\[\phi_k \in B^\infty_{bA}(U) \quad k = 1, \ldots, d \]
such that for any $\phi \in B^\infty_{bA}(U)$ there are unique elements $f^k \in C^\infty(U)$ with which
\[\phi = \sum f^k \phi_k. \]
Declaring the ϕ_k to be a frame over U gives the smooth vector bundle structure:

If $\psi_\ell \in B^\infty_{bA}(U)$ is another such choice, then
\[\phi_k = \sum g^\ell_k \psi_\ell = \sum g^\ell_k f^m \phi_m \]
\[\psi_\ell = \sum f^m_\ell \phi_m \]

Suppose
\[\text{spec}_e(A) \cap \{(y, \sigma) : \Im \sigma \neq \pm m/2\} \]
Then $\mathcal{I} = \bigcup_{y \in \mathcal{Y}} \mathcal{T}_y$ is a smooth vector bundle over \mathcal{Y}, and
\[C^\infty B^\infty_{bA}(\mathcal{Y}) = \{\text{all sections} \quad u : \mathcal{Y} \to \mathcal{I} \quad \text{which viewed as functions} \quad \text{on } (0, \infty) \times \mathcal{Y} \times \mathcal{Z} \quad \text{are smooth}\}. \]
\[\mathcal{T}_y = \ker A_y \quad \text{on} \]
\[\{ \sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_\sigma} a_{\sigma, \ell} x^{i_\sigma} \log^\ell x \} \]
\[-m/2 < \Im \sigma < m/2 \]
The proof consists of showing that every \(y_0 \in \mathcal{Y} \) has a neighborhood \(U \subset \mathcal{Y} \) for which there are elements
\[
\phi_k \in \mathcal{B}_{bA}^\infty(U) \quad k = 1, \ldots, d
\]
such that for any \(\phi \in \mathcal{B}_{bA}^\infty(U) \) there are unique elements \(f^k \in C^\infty(U) \) with which
\[
\phi = \sum f^k \phi_k.
\]
Declaring the \(\phi_k \) to be a frame over \(U \) gives the smooth vector bundle structure:

If \(\psi_\ell \in \mathcal{B}_{bA}^\infty(U) \) is another such choice, then
\[
\phi_k = \sum g_k^\ell \psi_\ell = \sum g_k^\ell f^m \phi_m \quad :. \quad \sum g_k^\ell f^m = \delta_k^m.
\]
\[
\psi_\ell = \sum f_\ell^m \phi_m
\]
\[\text{spec}_e(A) \cap \{(y, \sigma) : \Im \sigma \neq \pm m/2\}, \]
\[\mathcal{I} = \bigcup_{y \in \mathcal{Y}} \mathcal{I}_y, \mathcal{I}_y = \ker A_y \text{ on } N_{\sigma} \]
\[\{ \sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{N_{\sigma}} a_{\sigma,\ell} x^{i \sigma} \log^\ell x \} \]
Suppose \(\phi_k \in B_{bA}^\infty(U), \ k = 1, \ldots, d, \) are such that \(\phi_k(y) \) is a basis of \(T_y \) for each \(y \). For each \(\phi \in B_{bA}^\infty(U) \) there are \(f^k \in C^\infty(U) \) such that

\[
\phi = \sum f^k \phi_k?
\]
Suppose $\phi_k \in \mathcal{B}_{bA}^\infty(U)$, $k = 1, \ldots, d$, are such that $\phi_k(y)$ is a basis of \mathcal{T}_y for each y.

For each $\phi \in \mathcal{B}_{bA}^\infty(U)$ there are $f^k \in C^\infty(U)$ such that

$$\phi = \sum f^k \phi_k.$$

Let $\psi^\ell \in \mathcal{B}_{bA^*}^\infty(U)$, $\ell = 1, \ldots, d$ have the same property, for bA^*

$$\mathcal{B}_{bA}^\infty(U) = \{\text{all sections } u : \mathcal{Y} \to \mathcal{T} \text{ which viewed as functions on } (0, \infty) \times \mathcal{Y} \times \mathcal{Z} \text{ are smooth}\}.$$

$$\mathcal{B}_{bA^*}^\infty(U)$$ is the formal adjoint of bA_y.

$$\text{spec}_e(A) \cap \{(y, \sigma) : \Im \sigma \neq \pm m/2\},$$

$$\mathcal{T} = \bigcup_{y \in \mathcal{Y}} \mathcal{T}_y, \mathcal{T}_y = \ker A_y \text{ on } \{\sum_{\sigma \in \text{spec}_b(A_y)} \sum_{\ell=0}^{-m/2 < \Im \sigma < m/2} a_{\sigma,\ell} x^{i\sigma} \log^\ell x\}.$$

$$\text{B}_{bA}^\infty(U) = \{\text{all sections } u : \mathcal{Y} \to \mathcal{T} \text{ which viewed as functions on } (0, \infty) \times \mathcal{Y} \times \mathcal{Z} \text{ are smooth}\}.\]
Suppose \(\phi_k \in \mathcal{B}_{bA}^\infty(U), \; k = 1, \ldots, d, \) are such that \(\phi_k(y) \) is a basis of \(\mathcal{T}_y \) for each \(y \).

For each \(\phi \in \mathcal{B}_{bA}^\infty(U) \) there are \(f^k \in C^\infty(U) \) such that

\[
\phi = \sum f^k \phi_k.
\]

Let \(\psi^\ell \in \mathcal{B}_{bA^*}^\infty(U), \; \ell = 1, \ldots, d \) have the same property, for \(bA^* \)

Then

\[
\alpha^\ell_k(y) = [\omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y} = (bA_y(\omega \phi_k), \psi^\ell) - (\phi_k, bA^*_y(\omega \psi_k))
\]

depends smoothly on \(y \).
Suppose \(\phi_k \in \mathcal{B}_{bA}^\infty(U), \ k = 1, \ldots, d \), are such that \(\phi_k(y) \) is a basis of \(\mathcal{T}_y \) for each \(y \). For each \(\phi \in \mathcal{B}_{bA}^\infty(U) \) there are \(f^k \in C^\infty(U) \) such that

\[
\phi = \sum f^k \phi_k?
\]

Let \(\psi^\ell \in \mathcal{B}_{bA^*}^\infty(U), \ \ell = 1, \ldots, d \) have the same property, for \(bA^* \)

Then

\[
\alpha_k^\ell(y) = [\omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y} = (bA_y(\omega \phi_k), \psi^\ell) - (\phi_k, bA^*_y(\omega \psi_k))
\]

depends smoothly on \(y \). The pairing \([\cdot, \cdot]_{bA_y} \) is nonsingular, so \([\alpha_k^\ell(y)] \) is invertible for each \(y \).
Suppose \(\phi_k \in \mathcal{B}_b^{\infty}(U) \), \(k = 1, \ldots, d \), are such that \(\phi_k(y) \) is a basis of \(\mathcal{T}_y \) for each \(y \). For each \(\phi \in \mathcal{B}_b^{\infty}(U) \) there are \(f^k \in C^\infty(U) \) such that
\[
\phi = \sum f^k \phi_k?
\]
Let \(\psi^\ell \in \mathcal{B}_b^{\infty}(U) \), \(\ell = 1, \ldots, d \) have the same property, for \(bA^* \)

Then
\[
\alpha_k^\ell(y) = [\omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y} = (bA_y(\omega \phi_k), \psi^\ell) - (\phi_k, bA^*_y(\omega \psi_k))
\]
depends smoothly on \(y \). The pairing \([\cdot, \cdot]\) \(bA_y \) is nonsingular, so \([\alpha_k^\ell(y)] \) is invertible for each \(y \). Also
\[
h^\ell(y) = [\omega \phi(y), \omega \psi^\ell(y)]_{bA_y}
\]
is smooth.
Suppose $\phi_k \in \mathcal{B}_{bA}(U), k = 1, \ldots, d$, are such that $\phi_k(y)$ is a basis of T_y for each y. For each $\phi \in \mathcal{B}_{bA}(U)$ there are $f^k \in C^\infty(U)$ such that

$$\phi = \sum f^k \phi_k?$$

Let $\psi^\ell \in \mathcal{B}_{bA^*}(U), \ell = 1, \ldots, d$ have the same property, for bA^*

Then

$$\alpha^\ell_k(y) = [\omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y} = (bA_y(\omega \phi_k), \psi^\ell) - (\phi_k, bA^*_y(\omega \psi_k))$$

depends smoothly on y. The pairing $[\cdot, \cdot]_{bA_y}$ is nonsingular, so $[\alpha^\ell_k(y)]$ is invertible for each y. Also

$$h^\ell(y) = [\omega \phi(y), \omega \psi^\ell(y)]_{bA_y} = [\sum f^k(y) \omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y}$$

is smooth.
Suppose $\phi_k \in B^\infty_{bA}(U), k = 1, \ldots, d$, are such that $\phi_k(y)$ is a basis of T_y for each y. For each $\phi \in B^\infty_{bA}(U)$ there are $f^k \in C^\infty(U)$ such that

$$\phi = \sum f^k \phi_k?$$

Let $\psi^\ell \in B^\infty_{bA^*}(U), \ell = 1, \ldots, d$ have the same property, for bA^*.

Then

$$\alpha^\ell_k(y) = [\omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y} = (bA_y(\omega \phi_k), \psi^\ell) - (\phi_k, bA^*_y(\omega \psi_k))$$

depends smoothly on y. The pairing $[\cdot, \cdot]_{bA_y}$ is nonsingular, so $[\alpha^\ell_k(y)]$ is invertible for each y. Also

$$h^\ell(y) = [\omega \phi(y), \omega \psi^\ell(y)]_{bA_y} = [\sum f^k(y)\omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y} = \sum f^k(y)[\omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y}$$

is smooth.
Suppose \(\phi_k \in \mathcal{B}_{bA}^\infty(U) \), \(k = 1, \ldots, d \), are such that \(\phi_k(y) \) is a basis of \(\mathcal{T}_y \) for each \(y \). For each \(\phi \in \mathcal{B}_{bA}^\infty(U) \) there are \(f^k \in C^\infty(U) \) such that
\[
\phi = \sum f^k \phi_k \, .
\]
Let \(\psi^\ell \in \mathcal{B}_{bA^*}^\infty(U) \), \(\ell = 1, \ldots, d \) have the same property, for \(bA^* \)

Then
\[
\alpha_k^\ell(y) = [\omega \phi_k(y), \omega \psi^\ell(y)]_{bA_y} = (bA_y(\omega \phi_k), \psi^\ell) - (\phi_k, bA^*_y(\omega \psi_k))
\]
depends smoothly on \(y \). The pairing \([\cdot, \cdot]_{bA_y}\) is nonsingular, so \([\alpha_k^\ell(y)]\) is invertible for each \(y \). Also
\[
h^\ell(y) = [\omega \phi(y), \omega \psi^\ell(y)]_{bA_y} = \left[\sum f^k(y) \omega \phi_k(y), \omega \psi^\ell(y) \right]_{bA_y} = \sum f^k(y) \left[\omega \phi_k(y), \omega \psi^\ell(y) \right]_{bA_y}
\]
is smooth. So \(f^k(y) \) is smooth.

\[
\mathcal{B}_{bA}^\infty(U) = \{ \text{all sections } u : Y \to \mathcal{T} \text{ which viewed as functions on } (0, \infty) \times Y \times Z \text{ are smooth} \}.
\]

\(bA^*_y \) is the formal adjoint of \(bA_y \).

\(\omega \in C_c^\infty(\mathbb{R}) \), \(\omega(x) = 1 \) near 0

Traces and boundary value problems
Arkansas Spring Lecture Series
Suppose $\phi_k \in B_b^\infty(A)(U)$, $k = 1, \ldots, d$, are such that $\phi_k(y)$ is a basis of T_y for each y. For each $\phi \in B_b^\infty(A)(U)$ there are $f^k \in C^\infty(U)$ such that

$$\phi = \sum f^k \phi_k.$$

Let $\psi^\ell \in B_b^\infty(A^*)(U)$, $\ell = 1, \ldots, d$ have the same property, for bA^*.

Then

$$\alpha^\ell_k(y) = [\omega\phi_k(y), \omega\psi^\ell(y)]_{bA_y} = (bA_y(\omega\phi_k), \psi^\ell) - (\phi_k, bA^*_y(\omega\psi_k))$$

depends smoothly on y. The pairing $[\cdot, \cdot]_{bA_y}$ is nonsingular, so $[\alpha^\ell_k(y)]$ is invertible for each y. Also

$$h^\ell(y) = [\omega\phi(y), \omega\psi^\ell(y)]_{bA_y} = \sum f^k(y) [\omega\phi_k(y), \omega\psi^\ell(y)]_{bA_y} = \sum f^k(y) \alpha^\ell_k(y)$$

is smooth. So $f^k(y)$ is smooth.

$$= \sum f^k(y) \alpha^\ell_k(y)$$
How to get the $\phi_k \cdots$
How to get the $\phi_k \cdots$

For open $\Omega \subset \mathbb{C}$, let $\mathcal{H}ol(\Omega)$ and $\mathcal{Mero}(\Omega)$ be the spaces of $C^\infty(\mathbb{Z})$-valued holomorphic or meromorphic functions on Ω.

\[
bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)(xD_x)^k D_z^\beta
\]

\[
b\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta
\]
How to get the $\phi_k \cdots$

For open $\Omega \subset \mathbb{C}$, let $\mathfrak{Hol}(\Omega)$ and $\mathfrak{Mero}(\Omega)$ be the spaces of $C^\infty(\mathbb{Z})$-valued holomorphic or meromorphic functions on Ω. Fix y_0, let

$$\sigma_s, s = 1, \ldots, S_{y_0}$$

be the points in $\text{spec}_b(bA_{y_0}) \cap \Sigma$. Pick pairwise disjoint discs $D_s \subset \Sigma$ centered at the σ_s.

$$bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)(xD_x)^k D_z^\beta$$

$$b\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta$$

$$\Sigma = \{ \sigma \in \mathbb{C} : -m/2 < \Im \sigma < m/2 \}$$
How to get the $\phi_k \cdots$

For open $\Omega \subset \mathbb{C}$, let $\mathcal{H}ol(\Omega)$ and $\mathcal{M}er\mathcal{O}(\Omega)$ be the spaces of $C^\infty(\mathbb{Z})$-valued holomorphic or meromorphic functions on Ω. Fix y_0, let

$$\sigma_s, \ s = 1, \ldots, S_{y_0}$$

be the points in $\text{spec}_b(bA_{y_0}) \cap \Sigma$. Pick pairwise disjoint discs $D_s \subset \Sigma$ centered at the σ_s. View

$$(\dagger) \quad b\hat{P}_y(\sigma) : \mathcal{M}er\mathcal{O}(D_s)/\mathcal{H}ol(D_s) \to \mathcal{M}er\mathcal{O}(D_s)/\mathcal{H}ol(D_s).$$

$$bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)(xD_x)^{k} D_z^\beta$$

$$b\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0,y,z)\sigma^k D_z^\beta$$

$$\Sigma = \{ \sigma \in \mathbb{C} : -m/2 < \Im \sigma < m/2 \}$$
How to get the $\phi_k \cdots$

For open $\Omega \subset \mathbb{C}$, let $\mathcal{H}\mathcal{O}\mathcal{L}(\Omega)$ and $\mathcal{M}\mathcal{E}\mathcal{R}\mathcal{O}(\Omega)$ be the spaces of $C^\infty(\mathbb{Z})$-valued holomorphic or meromorphic functions on Ω. Fix y_0, let

$$\sigma_s, s = 1, \ldots, S_{y_0}$$

be the points in $\text{spec}_b(\,^bA_{y_0}) \cap \Sigma$. Pick pairwise disjoint discs $D_s \subset \Sigma$ centered at the σ_s. View

$$(\dagger) \quad \hat{b}\mathcal{P}_y(\sigma) : \mathcal{M}\mathcal{E}\mathcal{R}\mathcal{O}(D_s)/\mathcal{H}\mathcal{O}\mathcal{L}(D_s) \to \mathcal{M}\mathcal{E}\mathcal{R}\mathcal{O}(D_s)/\mathcal{H}\mathcal{O}\mathcal{L}(D_s).$$

The kernel of (\dagger) when $y = y_0$ consists of classes generated by elements
How to get the φk · · ·

For open Ω ⊂ C, let Ξol(Ω) and Mero(Ω) be the spaces of $\mathcal{C}^\infty(\mathcal{Z})$-valued holomorphic or meromorphic functions on Ω. Fix y_0, let

$$\sigma_s, s = 1, \ldots, S_{y_0}$$

be the points in spec$_b$($^bA_{y_0}$) ∩ Σ. Pick pairwise disjoint discs $D_s \subset \Sigma$ centered at the σ_s. View

$$(\dagger) \quad ^b\hat{P}_y(\sigma) : \text{Mero}(D_s)/\text{Hol}(D_s) \rightarrow \text{Mero}(D_s)/\text{Hol}(D_s).$$

The kernel of (\dagger) when $y = y_0$ consists of classes generated by elements

$$\hat{\phi}_{s,j,\ell}(y_0) = (\sigma - \sigma_s)^\ell \hat{\phi}_{s,j,0}(y_0), \quad \hat{\phi}_{s,j,0}(y_0) = \sum_{\nu=0}^{L_s,j-1} a_{s,j,\nu}(y_0) \frac{(\sigma - \sigma_s)^\nu}{(\sigma - \sigma_s)^\nu}, \quad a_{s,j,\nu} \in \mathcal{C}^\infty(\mathcal{Z})$$
How to get the $\phi_k \cdots$

For open $\Omega \subset \mathbb{C}$, let $\mathcal{H}\mathcal{O}l(\Omega)$ and $\mathcal{M}ero(\Omega)$ be the spaces of $C^\infty(\mathcal{Z})$-valued holomorphic or meromorphic functions on Ω. Fix y_0, let

$$\sigma_s, s = 1, \ldots, S_{y_0}$$

be the points in $\text{spec}_b(bA_{y_0}) \cap \Sigma$. Pick pairwise disjoint discs $D_s \subset \Sigma$ centered at the σ_s. View

$$(\dagger) \quad b\hat{P}_y(\sigma) : \mathcal{M}ero(D_s)/\mathcal{H}\mathcal{O}l(D_s) \to \mathcal{M}ero(D_s)/\mathcal{H}\mathcal{O}l(D_s).$$

The kernel of (\dagger) when $y = y_0$ consists of classes generated by elements

$$\hat{\phi}_{s,j,\ell}(y_0) = (\sigma - \sigma_s)\ell \hat{\phi}_{s,j,0}(y_0), \quad \hat{\phi}_{s,j,0}(y_0) = \sum_{\nu=0}^{L_s,j-1} \frac{a_{s,j,\nu}(y_0)}{(\sigma - \sigma_s)^\nu}, \quad a_{s,j,\nu} \in C^\infty(\mathcal{Z})$$

In a small neighborhood U of y_0 there are elements $\hat{\phi}_{s,j,\ell}(y) \in \mathcal{M}ero(D_s)$ whose classes span the kernel of (\dagger) and are smooth in $U \times D_s$ off of $(U \times D_s) \cap \text{spec}_e(A)$.

$$bA_y = \frac{1}{x^m} \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0, y, z)(xD_x)^k D_z^\beta$$

$$b\hat{P}_y(\sigma) = \sum_{k+|\beta| \leq m} a_{k,0,\beta}(0, y, z)\sigma^k D_z^\beta$$

$$\Sigma = \{ \sigma \in \mathbb{C} : -m/2 < \Im \sigma < m/2 \}$$
In a small neighborhood U of y_0 there are elements $\hat{\phi}_{s,j,\ell}(y) \in \text{Mero}(D_s)$ whose classes span the kernel of

$$b\hat{P}_y(\sigma) : \text{Mero}(D_s)/\text{Hol}(D_s) \rightarrow \text{Mero}(D_s)/\text{Hol}(D_s).$$

and are smooth in $U \times D_s$ off of $(U \times D_s) \cap \text{spec}_e(A)$.

Computes the singular part of ϕ. Now let $\hat{\phi}_{s,j,\ell}(y) = \frac{1}{2\pi i} \int_{\partial D_s} \hat{\phi}_{s,j,\ell}(y,\sigma) d\sigma$ These are the ϕ_k.

Traces and boundary value problems
Arkansas Spring Lecture Series
In a small neighborhood U of y_0 there are elements $\hat{\phi}_{s,j,\ell}(y) \in \text{Mero}(D_s)$ whose classes span the kernel of

$$b^\mathcal{P}_y(\sigma) : \text{Mero}(D_s)/\text{Hol}(D_s) \to \text{Mero}(D_s)/\text{Hol}(D_s).$$

and are smooth in $U \times D_s$ off of $(U \times D_s) \cap \text{spec}_e(A)$. Let

$$\hat{\phi}_{s,j,\ell}^s(y) = s_{D_s}(\hat{\phi}_{s,j,\ell}(y))$$

where

$$s_{D_s}(\hat{\phi}) = \frac{i}{2\pi} \int_{|\zeta - \sigma| = \epsilon_s} \frac{\hat{\phi}(\zeta)}{\zeta - \sigma} d\zeta, \quad \sigma \notin D_s$$
In a small neighborhood U of y_0 there are elements $\hat{\phi}_{s,j,\ell}(y) \in \text{Mero}(D_s)$ whose classes span the kernel of

$$b\hat{P}_y(\sigma) : \text{Mero}(D_s)/\text{Hol}(D_s) \to \text{Mero}(D_s)/\text{Hol}(D_s).$$

and are smooth in $U \times D_s$ off of $(U \times D_s) \cap \text{spec}_e(A)$. Let

$$\hat{\phi}_{s,j,\ell}^s(y) = s_{D_s}(\hat{\phi}_{s,j,\ell}(y))$$

where

$$s_{D_s}(\hat{\phi}) = \frac{i}{2\pi} \oint_{|\zeta - \sigma_s| = \epsilon_s} \frac{\hat{\phi}(\zeta)}{\zeta - \sigma} d\zeta, \quad \sigma \notin D_s$$

Computes the singular part of ϕ.
In a small neighborhood U of y_0 there are elements $\hat{\phi}_{s,j,\ell}(y) \in \text{Mero}(D_s)$ whose classes span the kernel of
\[
b\hat{P}_y(\sigma) : \text{Mero}(D_s)/\text{Hol}(D_s) \to \text{Mero}(D_s)/\text{Hol}(D_s).\]

and are smooth in $U \times D_s$ off of $(U \times D_s) \cap \text{spec}_e(A)$. Let
\[
\hat{\phi}^5_{s,j,\ell}(y) = \mathcal{s}_{D_s}(\hat{\phi}_{s,j,\ell}(y))
\]
where
\[
\mathcal{s}_{D_s}(\hat{\phi}) = \frac{i}{2\pi} \oint_{|\zeta - \sigma| = \epsilon_s} \frac{\hat{\phi}(\zeta)}{\zeta - \sigma} \, d\zeta, \quad \sigma \notin D_s
\]

Now let
\[
\phi^5_{s,j,\ell} = \frac{1}{2\pi} \int_{\partial D_s} \chi^i\sigma \hat{\phi}^5_{s,j,\ell}(y, \sigma) \, d\sigma
\]

These are the ϕ_k.
The next ingredient involves the normal family $A_{\wedge,\eta}$. This has its own minimal and maximal extensions:

$$D_{\wedge,\text{min}}(\eta), \quad D_{\wedge,\text{max}}(\eta)$$
The next ingredient involves the normal family $A_{\wedge,\eta}$. This has its own minimal and maximal extensions:

$$D_{\wedge,\text{min}}(\eta), \quad D_{\wedge,\text{max}}(\eta)$$

$$x^m A = \sum a_{k,\alpha,\beta}(x, y, z)(xD_x)^k(xD_y)^\alpha D_z^\beta$$

$$x^m A_{\wedge,\eta} = \sum a_{k,\alpha,\beta}(0, y, z)(xD_x)^k(x\eta)^\alpha D_z^\beta$$

Our standing assumption

$$\text{spec}_e(A) \cap (\mathcal{Y} \times \{\Re \sigma = \pm m/2\}) = \emptyset$$

implies $D_{\wedge,\text{min}}(\eta)$ is independent of η
The next ingredient involves the normal family $A_{\wedge, \eta}$. This has its own minimal and maximal extensions:

$$D_{\wedge, \text{min}}(\eta), \ D_{\wedge, \text{max}}(\eta)$$

Condition on conormal family:

$$x^mA = \sum a_{k, \alpha, \beta}(x, y, z)(xD_x)^k(xD_y)^\alpha D_z^\beta$$

$$x^mA_{\wedge, \eta} = \sum a_{k, \alpha, \beta}(0, y, z)(xD_x)^k(x\eta)^\alpha D_z^\beta$$

Our standing assumption

$$\text{spec}_e(A) \cap (\mathcal{V} \times \{\Im \sigma = \pm m/2\}) = \emptyset$$

implies $D_{\wedge, \text{min}}(\eta)$ is independent of η
The next ingredient involves the normal family $A_{\wedge,\eta}$. This has its own minimal and maximal extensions:

$$D_{\wedge,\min}(\eta), \quad D_{\wedge,\max}(\eta)$$

Condition on conormal family:

For $\eta \neq 0$: $A_{\wedge,\eta}$ is injective on $D_{\wedge,\min}(\eta)$ and surjective on $D_{\wedge,\max}(\eta)$
The next ingredient involves the normal family $A_{\land, \eta}$. This has its own minimal and maximal extensions:

$$D_{\land, \text{min}}(\eta), \quad D_{\land, \text{max}}(\eta)$$

Condition on conormal family:

For $\eta \neq 0$: $A_{\land, \eta}$ is injective on $D_{\land, \text{min}}(\eta)$ and surjective on $D_{\land, \text{max}}(\eta)$

Consequences: there are canonical operators

$$B_{\land, \text{min}}(\eta) : x^{-m/2}L_b^2 \to x^{-m/2}L_b^2, \quad B_{\land, \text{min}}(\eta)A_{\land}(\eta) = I \text{ on } D_{\land, \text{min}}(\eta)$$

$$B_{\land, \text{max}}(\eta) : x^{-m/2}L_b^2 \to x^{-m/2}L_b^2, \quad A_{\land}(\eta)B_{\land, \text{max}}(\eta) = I \text{ on } x^{-m/2}L_b^2.$$
The next ingredient involves the normal family $A_{\wedge,\eta}$. This has its own minimal and maximal extensions:

$$D_{\wedge,\text{min}}(\eta), \quad D_{\wedge,\text{max}}(\eta)$$

Condition on conormal family:

For $\eta \neq 0$: $A_{\wedge,\eta}$ is injective on $D_{\wedge,\text{min}}(\eta)$ and surjective on $D_{\wedge,\text{max}}(\eta)$

Consequences: there are canonical operators

$$B_{\wedge,\text{min}}(\eta): x^{-m/2}L^2_{b} \to x^{-m/2}L^2_{b}, \quad B_{\wedge,\text{min}}(\eta)A_{\wedge}(\eta) = I \text{ on } D_{\wedge,\text{min}}(\eta)$$

$$B_{\wedge,\text{max}}(\eta): x^{-m/2}L^2_{b} \to x^{-m/2}L^2_{b}, \quad A_{\wedge}(\eta)B_{\wedge,\text{max}}(\eta) = I \text{ on } x^{-m/2}L^2_{b}.$$
The next ingredient involves the normal family \(A_{\wedge, \eta} \). This has its own minimal and maximal extensions:

\[
\mathcal{D}_{\wedge, \min}(\eta), \quad \mathcal{D}_{\wedge, \max}(\eta)
\]

Condition on conormal family:

For \(\eta \neq 0 \): \(A_{\wedge, \eta} \) is injective on \(\mathcal{D}_{\wedge, \min}(\eta) \) and surjective on \(\mathcal{D}_{\wedge, \max}(\eta) \)

Consequences: there are canonical operators

\[
B_{\wedge, \min}(\eta) : x^{-m/2}L^2_b \to x^{-m/2}L^2_b, \quad B_{\wedge, \min}(\eta)A_{\wedge}(\eta) = I \text{ on } \mathcal{D}_{\wedge, \min}(\eta)
\]

\[
B_{\wedge, \max}(\eta) : x^{-m/2}L^2_b \to x^{-m/2}L^2_b, \quad A_{\wedge}(\eta)B_{\wedge, \max}(\eta) = I \text{ on } x^{-m/2}L^2_b.
\]

As maps into \(L^2 \) these are smooth in \(\eta \)

By an iterative process one extends the \(\phi_k \) (call them \(\phi_{k,0} \) now) as

\[
\sum_{\vartheta=0}^{N_k} \phi_{k,\vartheta}
\]

\[
x^m A = \sum a_{k,\alpha,\beta}(x, y, z)(xD_x)^k(xD_y)\alpha D_z^\beta
\]

\[
x^m A_{\wedge, \eta} = \sum a_{k,\alpha,\beta}(0, y, z)(xD_x)^k(x\eta)\alpha D_z^\beta
\]

Our standing assumption

\[
\text{spec}_e(A) \cap (\mathcal{Y} \times \{ \Im \sigma = \pm m/2 \}) = \emptyset
\]

implies \(\mathcal{D}_{\wedge, \min}(\eta) \) is independent of \(\eta \).
The next ingredient involves the normal family $A_{\wedge, \eta}$. This has its own minimal and maximal extensions:

$$D_{\wedge, \text{min}}(\eta), \quad D_{\wedge, \text{max}}(\eta)$$

Condition on conormal family:

For $\eta \neq 0$: $A_{\wedge, \eta}$ is injective on $D_{\wedge, \text{min}}(\eta)$ and surjective on $D_{\wedge, \text{max}}(\eta)$

Consequences: there are canonical operators

$$B_{\wedge, \text{min}}(\eta) : x^{-m/2} L^2_b \to x^{-m/2} L^2_b, \quad B_{\wedge, \text{min}}(\eta) A_{\wedge}(\eta) = I \text{ on } D_{\wedge, \text{min}}(\eta)$$

$$B_{\wedge, \text{max}}(\eta) : x^{-m/2} L^2_b \to x^{-m/2} L^2_b, \quad A_{\wedge}(\eta) B_{\wedge, \text{max}}(\eta) = I \text{ on } x^{-m/2} L^2_b.$$

As maps into L^2 these are smooth in η

By an iterative process one extends the ϕ_k (call them $\phi_{k,0}$ now) as

$$\sum_{\theta = 0}^{N_k} \phi_{k, \theta} \in D_{\wedge, \text{max}}(\eta)$$
The next ingredient involves the normal family $A_{\wedge, \eta}$. This has its own minimal and maximal extensions:

$$D_{\wedge, \text{min}}(\eta), \quad D_{\wedge, \text{max}}(\eta)$$

Condition on conormal family:

For $\eta \neq 0$: $A_{\wedge, \eta}$ is injective on $D_{\wedge, \text{min}}(\eta)$ and surjective on $D_{\wedge, \text{max}}(\eta)$

Consequences: there are canonical operators

$$B_{\wedge, \text{min}}(\eta) : x^{-m/2}L^2_b \to x^{-m/2}L^2_b, \quad B_{\wedge, \text{min}}(\eta)A_{\wedge}(\eta) = I \text{ on } D_{\wedge, \text{min}}(\eta)$$

$$B_{\wedge, \text{max}}(\eta) : x^{-m/2}L^2_b \to x^{-m/2}L^2_b, \quad A_{\wedge}(\eta)B_{\wedge, \text{max}}(\eta) = I \text{ on } x^{-m/2}L^2_b.$$

As maps into L^2 these are smooth in η

By an iterative process one extends the ϕ_k (call them $\phi_{k,0}$ now) as

$$\phi_k(\eta) = \sum_{\vartheta = 0}^{N_k} \phi_{k, \vartheta} \in D_{\wedge, \text{max}}(\eta)$$
The next ingredient involves the normal family $A_{\wedge, \eta}$. This has its own minimal and maximal extensions:

$$D_{\wedge, \text{min}}(\eta), \quad D_{\wedge, \text{max}}(\eta)$$

Condition on conormal family:

For $\eta \neq 0$: $A_{\wedge, \eta}$ is injective on $D_{\wedge, \text{min}}(\eta)$ and surjective on $D_{\wedge, \text{max}}(\eta)$

Consequences: there are canonical operators

$$B_{\wedge, \text{min}}(\eta) : x^{-m/2}L^2_b \rightarrow x^{-m/2}L^2_b, \quad B_{\wedge, \text{min}}(\eta)A_{\wedge}(\eta) = I \text{ on } D_{\wedge, \text{min}}(\eta)$$

$$B_{\wedge, \text{max}}(\eta) : x^{-m/2}L^2_b \rightarrow x^{-m/2}L^2_b, \quad A_{\wedge}(\eta)B_{\wedge, \text{max}}(\eta) = I \text{ on } x^{-m/2}L^2_b.$$

As maps into L^2 these are smooth in η

By an iterative process one extends the ϕ_k (call them $\phi_{k,0}$ now) as

$$\phi_k(\eta) = \sum_{\vartheta=0}^{N_k} \phi_{k,\vartheta} \in D_{\wedge, \text{max}}(\eta)$$

$$x^mA = \sum a_{k,\alpha,\beta}(x, y, z)(xD_x)^k(xD_y)^\alpha D_z^\beta$$

$$x^mA_{\wedge, \eta} = \sum a_{k,\alpha,\beta}(0, y, z)(xD_x)^k(x\eta)^\alpha D_z^\beta$$

Our standing assumption

$$\text{spec}_e(A) \cap (\mathcal{Y} \times \{\Im \sigma = \pm m/2\}) = \emptyset$$

implies $D_{\wedge, \text{min}}(\eta)$ is independent of η
The $\phi_k(\eta)$ are further corrected and then used to define a space

$$\mathcal{H}_A \subset D_{\text{max}}(A)$$

complementary to $D_{\text{min}}(A)$. The idea is that

$$H^m_A = \mathcal{H}_A \oplus D_{\text{min}}(A)$$

becomes an analogue of the regular $H^m(\mathcal{M})$ in the case where A is a regular elliptic operator.
The $\phi_k(\eta)$ are further corrected and then used to define a space

$$\mathcal{H}_A \subset D_{\text{max}}(A)$$

complementary to $D_{\text{min}}(A)$. The idea is that

$$H_A^m = \mathcal{H}_A \oplus D_{\text{min}}(A)$$

becomes an analogue of the regular $H^m(M)$ in the case where A is a regular elliptic operator. Elements u of $\mathcal{H}_A \subset D_{\text{max}}(A)$ have well behaved boundary values (traces) γu.
The $\phi_k(\eta)$ are further corrected and then used to define a space

$$\mathcal{H}_A \subset D_{\text{max}}(A)$$

complementary to $D_{\text{min}}(A)$. The idea is that

$$H^m_A = \mathcal{H}_A \oplus D_{\text{min}}(A)$$

becomes an analogue of the regular $H^m(M)$ in the case where A is a regular elliptic operator. Elements u of $\mathcal{H}_A \subset D_{\text{max}}(A)$ have well behaved boundary values (traces) γu.

A boundary value problem is now posed as

Find $u \in H_A$ such that

$$Au = f, \ f \in x^{-m/2}L^2_b$$

$$\beta \gamma u = 0.$$

where β is some system of pseudodifferential operators on sections of T_{bA}.
Cast

and so on . . .

The End
Cast

edges

and so on . . .

The End

Traces and boundary value problems

Arkansas Spring Lecture Series
Cast

- edges
- kinks
- "corners"
- conical points
- cracks
- singularities

and so on.

The End
Cast

“corners”

edges

kinks

and so on...
Cast

“corners”

conical points

edges

kinks

and so on...
Cast

“corners”

edges

cracks

conical points

kinks

and so on . . .
Cast

“corners”

edges

singularities

cracks

conical points

kinks

and so on . . .
Cast

“corners”

singularities

edges

conical points

kinks

Cracks

The End

and so on . . .