Domains of closed extensions of ODEs
Part IV

Gerardo A. Mendoza
Temple University
State College, August 2010
Overview

We focus today on symmetric semibounded operators.
Overview

We focus today on symmetric semibounded operators.
- I’ll begin with a quick overview of the construction of the completion of a normed space.
Overview

We focus today on symmetric semibounded operators.

- I’ll begin with a quick overview of the construction of the completion of a normed space.
- Then I’ll describe the Friedrichs extension. This is a classical procedure to construct a selfadjoint extension of a symmetric semibounded operator.

Semibounded means symmetric on $\mathcal{C}_\infty(M, \mathcal{C}_n)$, plus there is $C \in \mathbb{R}$ such that $(A\phi, \phi) \geq C\|\phi\|^2$ for all $\phi \in \mathcal{C}_\infty(M)$. We will assume the inequality as stated.
Overview

We focus today on symmetric semibounded operators.

- I’ll begin with a quick overview of the construction of the completion of a normed space.

- Then I’ll describe the Friedrichs extension. This is a classical procedure to construct a selfadjoint extension of a symmetric semibounded operator.

- I’ll use the Friedrics extension to describe all other selfadjoint extensions, in particular to obtain (non effective) formulas for the eigenvalues.
Overview

We focus today on symmetric semibounded operators.

- I’ll begin with a quick overview of the construction of the completion of a normed space.

- Then I’ll describe the Friedrichs extension. This is a classical procedure to construct a selfadjoint extension of a symmetric semibounded operator.

- I’ll use the Friedrics extension to describe all other selfadjoint extensions, in particular to obtain (non effective) formulas for the eigenvalues.

Semibounded means symmetric on $C_c^\infty(\hat{M}, \mathbb{C}^n)$, plus there is $C \in \mathbb{R}$ such that

$$(A\phi, \phi) \geq C\|\phi\|^2 \quad \text{for all } \phi \in C_c^\infty(\hat{M})$$

or the opposite inequality. We will assume the inequality as stated.
A crash course on completions

Let \mathcal{N} be a normed space over \mathbb{C}, assume it is not already complete. Consider the family \mathcal{C} whose elements are the Cauchy sequences in \mathcal{N}.

Define \sim on \mathcal{C} by declaring

\[
\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty \quad \text{iff} \quad \|x_\mu - x'_\mu\| \rightarrow 0 \quad \text{as} \quad \mu \rightarrow \infty.
\]

Let \mathcal{N} be the set of equivalence classes. Suppose

\[
\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty \quad \text{and} \quad \{y_\mu\}_{\mu=1}^\infty \sim \{y'_\mu\}_{\mu=1}^\infty.
\]

Then:

\[
\{x_\mu + y_\mu\}_{\mu=1}^\infty \sim \{x'_\mu + y'_\mu\}_{\mu=1}^\infty \quad \text{and} \quad \{\lambda x_\mu\}_{\mu=1}^\infty \sim \{\lambda x'_\mu\}_{\mu=1}^\infty
\]

so there are well defined operations of sum and multiplication by scalar on \mathcal{N}.

\mathcal{N} has a norm:

The limits $\lim_{\mu \rightarrow \infty} \|x_\mu\|$, $\lim_{\mu \rightarrow \infty} \|x'_\mu\|$ exist and are equal. This defines a norm on \mathcal{N}.
A crash course on completions

Let \mathcal{N} be a normed space over \mathbb{C}, assume it is not already complete. Consider the family \mathcal{C} whose elements are the Cauchy sequences in \mathcal{N}. Define \sim on \mathcal{C} by declaring $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ iff $\|x_\mu - x'_\mu\| \to 0$ as $\mu \to \infty$.

Let $\overline{\mathcal{N}}$ be the set of equivalence classes.
A crash course on completions

Let \mathcal{N} be a normed space over \mathbb{C}, assume it is not already complete. Consider the family \mathcal{C} whose elements are the Cauchy sequences in \mathcal{N}. Define \sim on \mathcal{C} by declaring $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ iff $\|x_\mu - x'_\mu\| \to 0$ as $\mu \to \infty$.

Let $\overline{\mathcal{N}}$ be the set of equivalence classes.

Suppose $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ and $\{y_\mu\}_{\mu=1}^\infty \sim \{y'_\mu\}_{\mu=1}^\infty$.
A crash course on completions

Let \mathcal{N} be a normed space over \mathbb{C}, assume it is not already complete. Consider the family \mathcal{C} whose elements are the Cauchy sequences in \mathcal{N}. Define \sim on \mathcal{C} by declaring $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ iff $\|x_\mu - x'_\mu\| \to 0$ as $\mu \to \infty$.

Let $\overline{\mathcal{N}}$ be the set of equivalence classes.

Suppose $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ and $\{y_\mu\}_{\mu=1}^\infty \sim \{y'_\mu\}_{\mu=1}^\infty$.

Then:

$$\{x_\mu + y_\mu\}_{\mu=1}^\infty \sim \{x'_\mu + y'_\mu\}_{\mu=1}^\infty$$
A crash course on completions

Let \mathcal{N} be a normed space over \mathbb{C}, assume it is not already complete. Consider the family \mathcal{C} whose elements are the Cauchy sequences in \mathcal{N}. Define \sim on \mathcal{C} by declaring $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ iff $\|x_\mu - x'_\mu\| \to 0$ as $\mu \to \infty$.

Let $\overline{\mathcal{N}}$ be the set of equivalence classes.

Suppose $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ and $\{y_\mu\}_{\mu=1}^\infty \sim \{y'_\mu\}_{\mu=1}^\infty$.

Then: $\{x_\mu + y_\mu\}_{\mu=1}^\infty \sim \{x'_\mu + y'_\mu\}_{\mu=1}^\infty$

and if $\lambda \in \mathbb{C}$ then $\{\lambda x_\mu\}_{\mu=1}^\infty \sim \{\lambda x'_\mu\}_{\mu=1}^\infty$.
A crash course on completions

Let \mathcal{N} be a normed space over \mathbb{C}, assume it is not already complete. Consider the family \mathcal{C} whose elements are the Cauchy sequences in \mathcal{N}. Define \sim on \mathcal{C} by declaring $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ iff $\|x_\mu - x'_\mu\| \to 0$ as $\mu \to \infty$.

Let $\overline{\mathcal{N}}$ be the set of equivalence classes.

Suppose $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ and $\{y_\mu\}_{\mu=1}^\infty \sim \{y'_\mu\}_{\mu=1}^\infty$.

Then:

$$\{x_\mu + y_\mu\}_{\mu=1}^\infty \sim \{x'_\mu + y'_\mu\}_{\mu=1}^\infty$$

and if $\lambda \in \mathbb{C}$ then

$$\{\lambda x_\mu\}_{\mu=1}^\infty \sim \{\lambda x'_\mu\}_{\mu=1}^\infty$$

so there are well defined operations of sum and multiplication by scalar on \mathcal{C}.

A crash course on completions

Let \mathcal{N} be a normed space over \mathbb{C}, assume it is not already complete. Consider the family \mathcal{C} whose elements are the Cauchy sequences in \mathcal{N}. Define \sim on \mathcal{C} by declaring $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ iff $\|x_\mu - x'_\mu\| \to 0$ as $\mu \to \infty$.

Let $\overline{\mathcal{N}}$ be the set of equivalence classes.

Suppose $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ and $\{y_\mu\}_{\mu=1}^\infty \sim \{y'_\mu\}_{\mu=1}^\infty$.

Then: $\{x_\mu + y_\mu\}_{\mu=1}^\infty \sim \{x'_\mu + y'_\mu\}_{\mu=1}^\infty$ and if $\lambda \in \mathbb{C}$ then $\{\lambda x_\mu\}_{\mu=1}^\infty \sim \{\lambda x'_\mu\}_{\mu=1}^\infty$ so there are well defined operations of sum and multiplication by scalar on \mathcal{C}. $\overline{\mathcal{N}}$ has a norm:
A crash course on completions

Let \mathcal{N} be a normed space over \mathbb{C}, assume it is not already complete. Consider the family \mathcal{C} whose elements are the Cauchy sequences in \mathcal{N}. Define \sim on \mathcal{C} by declaring $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ iff $\|x_\mu - x'_\mu\| \to 0$ as $\mu \to \infty$.

Let \mathcal{N} be the set of equivalence classes.

Suppose $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ and $\{y_\mu\}_{\mu=1}^\infty \sim \{y'_\mu\}_{\mu=1}^\infty$.

Then: $\{x_\mu + y_\mu\}_{\mu=1}^\infty \sim \{x'_\mu + y'_\mu\}_{\mu=1}^\infty$

and if $\lambda \in \mathbb{C}$ then $\{\lambda x_\mu\}_{\mu=1}^\infty \sim \{\lambda x'_\mu\}_{\mu=1}^\infty$

so there are well defined operations of sum and multiplication by scalar on \mathcal{C}.

\mathcal{N} has a norm: The limits $\lim_{\mu \to \infty} \|x_\mu\|$, $\lim_{\mu \to \infty} \|x'_\mu\|$ exist and are equal. This defines a norm on \mathcal{N}.

G. A. Mendoza (Temple University)
is complete:

If \(\{x_\nu \}_{\nu=1}^\infty \) is a Cauchy sequence in \(\mathbb{N} \), then using a diagonalization argument one constructs an equivalence class \(x \in \mathbb{N} \) such that \(\lim_{\nu \to \infty} x_\nu = x \). So \(\mathbb{N} \) is complete.

\(\mathbb{N} \) is contained in \(\mathbb{N} \):

The map \(\iota \) that sends \(x \in \mathbb{N} \) to the class of the constant sequence \(\{x_\mu \}_{\mu=1}^\infty \) is injective and continuous (of norm 1), with dense image.

If \(\mathbb{N} \) is a pre-Hilbert space, then \(\mathbb{N} \) is a Hilbert space:

Suppose the norm of \(\mathbb{N} \) comes from an inner product. Again suppose \(\{x_\mu \}_{\mu=1}^\infty \sim \{x'_\mu \}_{\mu=1}^\infty \) and \(\{y_\mu \}_{\mu=1}^\infty \sim \{y'_\mu \}_{\mu=1}^\infty \). Then both limits \(\lim_{\mu \to \infty} (x_\mu, y_\mu) \), \(\lim_{\mu \to \infty} (x'_\mu, y'_\mu) \) exist and are equal. So \(\mathbb{N} \) gets a bilinear form induced from that of \(\mathbb{N} \), which one verifies is an inner product.

End of crash course on completions
If \(\{x_\nu\}_{\nu=1}^\infty \) is a Cauchy sequence in \(\bar{\mathcal{N}} \), then using a diagonalization argument one constructs an equivalence class \(x \in \bar{\mathcal{N}} \) such that \(\lim x_\nu = x \). So \(\bar{\mathcal{N}} \) is complete.
\overline{N} is complete: If $\{x_\nu\}_{\nu=1}^\infty$ is a Cauchy sequence in \overline{N}, then using a diagonalization argument one constructs an equivalence class $x \in \overline{N}$ such that $\lim x_\nu = x$. So \overline{N} is complete.

N is contained in \overline{N}:
\(\mathcal{N} \) is complete: If \(\{x_\nu\}_{\nu=1}^\infty \) is a Cauchy sequence in \(\overline{\mathcal{N}} \), then using a diagonalization argument one constructs an equivalence class \(x \in \overline{\mathcal{N}} \) such that \(\lim x_\nu = x \). So \(\overline{\mathcal{N}} \) is complete.

\(\mathcal{N} \) is contained in \(\overline{\mathcal{N}} \): The map \(\iota \) that sends \(x \in \mathcal{N} \) to the class of the constant sequence \(\{x_\mu\}_{\mu=1}^\infty \) is injective and continuous (of norm 1), with dense image.
\(\overline{\mathcal{N}} \) is complete: If \(\{x_\nu\}_{\nu=1}^\infty \) is a Cauchy sequence in \(\overline{\mathcal{N}} \), then using a diagonalization argument one constructs an equivalence class \(x \in \overline{\mathcal{N}} \) such that \(\lim x_\nu = x \). So \(\overline{\mathcal{N}} \) is complete.

\(\mathcal{N} \) is contained in \(\overline{\mathcal{N}} \): The map \(\iota \) that sends \(x \in \mathcal{N} \) to the class of the constant sequence \(\{x_\mu\}_{\mu=1}^\infty \) is injective and continuous (of norm 1), with dense image.

If \(\mathcal{N} \) is a pre-Hilbert space, then \(\overline{\mathcal{N}} \) is a Hilbert space:
\(\overline{\mathcal{N}} \) is complete: If \(\{x_\nu\}_{\nu=1}^\infty \) is a Cauchy sequence in \(\overline{\mathcal{N}} \), then using a diagonalization argument one constructs an equivalence class \(x \in \overline{\mathcal{N}} \) such that \(\lim_{\nu \to \infty} x_\nu = x \). So \(\overline{\mathcal{N}} \) is complete.

\(\mathcal{N} \) is contained in \(\overline{\mathcal{N}} \): The map \(\iota \) that sends \(x \in \mathcal{N} \) to the class of the constant sequence \(\{x_\mu\}_{\mu=1}^\infty \) is injective and continuous (of norm 1), with dense image.

If \(\mathcal{N} \) is a pre-Hilbert space, then \(\overline{\mathcal{N}} \) is a Hilbert space: Suppose the norm of \(\mathcal{N} \) comes from an inner product.
\(\overline{N} \) is complete: If \(\{ x_\nu \}_{\nu=1}^\infty \) is a Cauchy sequence in \(\overline{N} \), then using a diagonalization argument one constructs an equivalence class \(x \in \overline{N} \) such that \(\lim_{\nu \to \infty} x_\nu = x \). So \(\overline{N} \) is complete.

\(N \) is contained in \(\overline{N} \): The map \(\iota \) that sends \(x \in N \) to the class of the constant sequence \(\{ x_\mu \}_{\mu=1}^\infty \) is injective and continuous (of norm 1), with dense image.

If \(N \) is a pre-Hilbert space, then \(\overline{N} \) is a Hilbert space: Suppose the norm of \(N \) comes from an inner product. Again suppose \(\{ x_\mu \}_{\mu=1}^\infty \sim \{ x_\mu' \}_{\mu=1}^\infty \) and \(\{ y_\mu \}_{\mu=1}^\infty \sim \{ y_\mu' \}_{\mu=1}^\infty \). Then both limits

\[
\lim_{\mu \to \infty} (x_\mu, y_\mu), \quad \lim_{\mu \to \infty} (x_\mu', y_\mu')
\]

exist and are equal.
\overline{N} is complete: If $\{x_\nu\}_{\nu=1}^\infty$ is a Cauchy sequence in \overline{N}, then using a diagonalization argument one constructs an equivalence class $x \in \overline{N}$ such that $\lim_{\nu \to \infty} x_\nu = x$. So \overline{N} is complete.

N is contained in \overline{N}: The map ι that sends $x \in N$ to the class of the constant sequence $\{x_\mu\}_{\mu=1}^\infty$ is injective and continuous (of norm 1), with dense image.

If N is a pre-Hilbert space, then \overline{N} is a Hilbert space: Suppose the norm of N comes from an inner product. Again suppose $\{x_\mu\}_{\mu=1}^\infty \sim \{x'_\mu\}_{\mu=1}^\infty$ and $\{y_\mu\}_{\mu=1}^\infty \sim \{y'_\mu\}_{\mu=1}^\infty$. Then both limits

$$\lim_{\mu \to \infty} (x_\mu, y_\mu), \quad \lim_{\mu \to \infty} (x'_\mu, y'_\mu)$$

exist and are equal. So \overline{N} gets a bilinear form induced from that of N, which one verifies is an inner product.
$\overline{\mathcal{N}}$ is complete: If $\{x_\nu\}_{\nu=1}^{\infty}$ is a Cauchy sequence in $\overline{\mathcal{N}}$, then using a diagonalization argument one constructs an equivalence class $x \in \overline{\mathcal{N}}$ such that $\lim_{\nu \to \infty} x_\nu = x$. So $\overline{\mathcal{N}}$ is complete.

\mathcal{N} is contained in $\overline{\mathcal{N}}$: The map ι that sends $x \in \mathcal{N}$ to the class of the constant sequence $\{x_\mu\}_{\mu=1}^{\infty}$ is injective and continuous (of norm 1), with dense image.

If \mathcal{N} is a pre-Hilbert space, then $\overline{\mathcal{N}}$ is a Hilbert space: Suppose the norm of \mathcal{N} comes from an inner product. Again suppose $\{x_\mu\}_{\mu=1}^{\infty} \sim \{x'_\mu\}_{\mu=1}^{\infty}$ and $\{y_\mu\}_{\mu=1}^{\infty} \sim \{y'_\mu\}_{\mu=1}^{\infty}$. Then both limits

$$\lim_{\mu \to \infty} (x_\mu, y_\mu), \quad \lim_{\mu \to \infty} (x'_\mu, y'_\mu)$$

exist and are equal. So $\overline{\mathcal{N}}$ gets a bilinear form induced from that of \mathcal{N}, which one verifies is an inner product.

End of crash course on completions
Friedrichs extension

Suppose \(A \) is symmetric semibounded: There is \(C \in \mathbb{R} \) such that
\[
(A \phi, \phi)_{L^2} \geq C \| \phi \|_{L^2}^2
\]
for all \(\phi \in C^\infty_0(\mathring{M}, \mathbb{C}^n) \).

(this statement includes the assertion that \((A \phi, \phi)_{L^2}\) is a real number).

Then
\[
((A - C + 1) \phi, \phi)_{L^2} \geq \| \phi \|_{L^2}^2
\]
for all \(\phi \in C^\infty_0(\mathring{M}, \mathbb{C}^n) \).

So we may assume (for the time being, at least) that \(C > 0 \), in which case we say that \(A \) is a positive operator.

The construction of the Friedrichs extension takes advantage of the positivity of \(A \) through the definition
\[
(\phi, \psi)_{F} = (A \phi, \psi)_{L^2}, \phi, \psi \in C^\infty_0(\mathring{M}, \mathbb{C}^n).
\]

The positivity of \(A \) implies that \((\cdot, \cdot)_F\) defines a norm on \(C^\infty_0(\mathring{M}, \mathbb{C}^n) \).

This inner product makes \(C^\infty_0(\mathring{M}, \mathbb{C}^n) \) into a pre-Hilbert space. We let \(H \) be its completion.
Friedrichs extension

Suppose A is symmetric semibounded: There is $C \in \mathbb{R}$ such that

$$(A\phi, \phi)_{L^2} \geq C\|\phi\|_{L^2}^2 \quad \text{for all } \phi \in C_\infty^c(M, \mathbb{C}^n).$$

(this statement includes the assertion that $(A\phi, \phi)_{L^2}$ is a real number).
Friedrichs extension

Suppose A is symmetric semibounded: There is $C \in \mathbb{R}$ such that

$$\left(A\phi, \phi \right)_{L^2} \geq C \| \phi \|_{L^2}^2 \quad \text{for all } \phi \in C^\infty_c(\mathcal{M}, \mathbb{C}^n).$$

(this statement includes the assertion that $(A\phi, \phi)_{L^2}$ is a real number).

Then

$$\left((A - C + 1)\phi, \phi \right)_{L^2} \geq \| \phi \|_{L^2}^2 \quad \text{for all } \phi \in C^\infty_c(\mathcal{M}, \mathbb{C}^n).$$

So we may assume (for the time being, at least) that $C > 0$, in which case we say that A is a positive operator.
Friedrichs extension

Suppose A is symmetric semibounded: There is $C \in \mathbb{R}$ such that

$$(A\phi, \phi)_{L^2} \geq C\|\phi\|_{L^2}^2$$

for all $\phi \in C_c^\infty(\mathcal{M}, \mathbb{C}^n)$.

(this statement includes the assertion that $(A\phi, \phi)_{L^2}$ is a real number).

Then

$$((A - C + 1)\phi, \phi)_{L^2} \geq \|\phi\|_{L^2}^2$$

for all $\phi \in C_c^\infty(\mathcal{M}, \mathbb{C}^n)$.

So we may assume (for the time being, at least) that $C > 0$, in which case we say that A is a positive operator.

The construction of the Friedrichs extension takes advantage of the positivity of A through the definition

$$(\phi, \psi)_F = (A\phi, \psi)_{L^2}, \quad \phi, \psi \in C_c^\infty(\mathcal{M}, \mathbb{C}^n).$$

The positivity of A implies that $(\cdot, \cdot)_F$ defines a norm on $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$. This inner product makes $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$ into a pre-Hilbert space. We let H be its completion.
Briefly, let H be the completion of C_c^∞ with respect to $\| \cdot \|_F$. Then $C_c^\infty \subset H \subset L^2$. There is $B : L^2 \to H$ such that $(u, f)_{L^2} = (u, Bf)_{L^2}$ for all $u \in H$, $f \in L^2$.

One defines $D_F = \text{rg} B$ and shows:

- $D_{\text{min}} \subset D_F \subset D_{\text{max}}$.
- The operator A_{D_F} is selfadjoint.

If you follow the construction with $A = -d^2/dx^2$ on $M = [0, 1]$, you get $H = H_1^1(M)$, $D_F = H_1^0(M) \cap H_2^2(M)$. For instance, if $\varphi, \psi \in C_c^\infty(\circ M)$, then $(\varphi, \psi)_F = -\left(\frac{d^2\varphi}{dx^2}, \psi\right)$.

Integration by parts gives $\| \varphi \|_2^2_F = \left(\frac{d\varphi}{dx}, \frac{d\varphi}{dx}\right)$ if $\varphi \in C_c^\infty$, the reason why $H = H_1^1$. Why is $\| \varphi \|_2^2_F \geq c \| \varphi \|_2^2_{L^2}$?
Briefly, let H be the completion of C_c^∞ with respect to $\| \cdot \|_F$. Then

$$C_c^\infty \subset H \subset L^2.$$

There is $B : L^2 \to H$ such that

$$(u, f)_{L^2} = (u, Bf) \quad \forall u \in H, \ f \in L^2.$$

Integration by parts gives

$$\| \phi \|_F^2 = (d^2 \phi / dx^2, \phi)$$

if $\phi \in C_c^\infty$, the reason why $H = H^1$. Why is $\| \phi \|_F^2 \geq c \| \phi \|_{L^2}^2$?
Briefly, let H be the completion of C_c^∞ with respect to $\| \cdot \|_F$. Then

$$C_c^\infty \subset H \subset L^2.$$

There is $B : L^2 \to H$ such that

$$(u, f)_{L^2} = (u, Bf) \quad \forall u \in H, \ f \in L^2.$$

One defines $\mathcal{D}_F = \text{rg } B$ and shows:

- $\mathcal{D}_{\min} \subset \mathcal{D}_F \subset \mathcal{D}_{\max}$.
- The operator $A_{\mathcal{D}_F}$ is selfadjoint.
Briefly, let H be the completion of C_c^∞ with respect to $\| \cdot \|_F$. Then

$$C_c^\infty \subset H \subset L^2.$$

There is $B : L^2 \to H$ such that

$$(u, f)_{L^2} = (u, Bf) \quad \forall u \in H, \ f \in L^2.$$

One defines $\mathcal{D}_F = \text{rg } B$ and shows:

- $\mathcal{D}_{\text{min}} \subset \mathcal{D}_F \subset \mathcal{D}_{\text{max}}$.
- The operator $A_{\mathcal{D}_F}$ is selfadjoint.

If you follow the construction with $A = -d^2/dx^2$ on $\mathcal{M} = [0, 1]$, you get

$$H = H^1(\mathcal{M}), \quad \mathcal{D}_F = H^1_0(\mathcal{M}) \cap H^2(\mathcal{M}).$$
Briefly, let H be the completion of \mathcal{C}_c^∞ with respect to $\| \cdot \|_F$. Then

$$\mathcal{C}_c^\infty \subset H \subset L^2.$$

There is $B : L^2 \to H$ such that

$$(u, f)_{L^2} = (u, Bf) \quad \forall u \in H, \ f \in L^2.$$

One defines $\mathcal{D}_F = \text{rg } B$ and shows:

- $\mathcal{D}_{\text{min}} \subset \mathcal{D}_F \subset \mathcal{D}_{\text{max}}$.
- **The operator $A_{\mathcal{D}_F}$ is selfadjoint.**

If you follow the construction with $A = -d^2/dx^2$ on $\mathcal{M} = [0, 1]$, you get

$$H = H^1(\mathcal{M}), \quad \mathcal{D}_F = H^1_0(\mathcal{M}) \cap H^2(\mathcal{M}).$$

For instance, if $\phi, \psi \in \mathcal{C}_c^\infty(\mathcal{M})$, then

$$(\phi, \psi)_F = -(d^2 \phi / dx^2, \psi).$$

Integration by parts gives

$$\| \phi \|_F^2 = \left(\frac{d \phi}{dx}, \frac{d \phi}{dx} \right)$$

if $\phi \in \mathcal{C}_c^\infty$, the reason why $H = H^1$.

\[\text{G. A. Mendoza (Temple University) } \]
Briefly, let H be the completion of C_c^∞ with respect to $\| \cdot \|_F$. Then
\[C_c^\infty \subset H \subset L^2. \]

There is $B : L^2 \to H$ such that
\[(u, f)_{L^2} = (u, Bf) \quad \forall u \in H, \ f \in L^2. \]

One defines $D_F = \text{rg } B$ and shows:
- $D_{\min} \subset D_F \subset D_{\max}$.
- The operator A_{D_F} is selfadjoint.

If you follow the construction with $A = -d^2/dx^2$ on $\mathcal{M} = [0, 1]$, you get
\[H = H^1(\mathcal{M}), \quad D_F = H^1_0(\mathcal{M}) \cap H^2(\mathcal{M}). \]

For instance, if $\phi, \psi \in C_c^\infty(\mathcal{M})$, then
\[(\phi, \psi)_F = -\left(\frac{d^2 \phi}{dx^2}, \psi\right). \]

Integration by parts gives
\[\| \phi \|^2_F = \left(\frac{d \phi}{dx}, \frac{d \phi}{dx} \right) \]

Why is $\| \phi \|^2_F \geq c \| \phi \|^2_{L^2}$?

if $\phi \in C_c^\infty$, the reason why $H = H^1$.

We may view $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$ as a subset (a dense subset) of H.
We may view $C_c^\infty(\hat{\mathcal{M}}, \mathbb{C}^n)$ as a subset (a dense subset) of H.

The inclusion $\iota : C_c^\infty(\hat{\mathcal{M}}, \mathbb{C}^n) \to L^2(\mathcal{M}, \mathbb{C}^n)$ extends to a continuous map $\iota : H \to L^2(\mathcal{M}, \mathbb{C}^n)$:
We may view $C_c^\infty(\hat{\mathcal{M}}, \mathbb{C}^n)$ as a subset (a dense subset) of H.

The inclusion $\iota : C_c^\infty(\hat{\mathcal{M}}, \mathbb{C}^n) \to L^2(\mathcal{M}, \mathbb{C}^n)$ extends to a continuous map

$\iota : H \to L^2(\mathcal{M}, \mathbb{C}^n)$:

Suppose $\{\phi_\mu\}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty(\hat{\mathcal{M}}, \mathbb{C}^n)$ (with respect to $\|\cdot\|_F$) representing an element $\phi \in H$. Then

$$\|\phi_\mu - \phi_\nu\|_{L^2} \leq \|\phi_\mu - \phi_\nu\|_F \to 0 \text{ as } \mu, \nu \to \infty$$
We may view $C_c^\infty (\mathcal{M}, \mathbb{C}^n)$ as a subset (a dense subset) of H.

The inclusion $\iota : C_c^\infty (\mathcal{M}, \mathbb{C}^n) \to L^2 (\mathcal{M}, \mathbb{C}^n)$ extends to a continuous map $\iota : H \to L^2 (\mathcal{M}, \mathbb{C}^n)$:

Suppose $\{ \phi_\mu \}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty (\mathcal{M}, \mathbb{C}^n)$ (with respect to $\| \cdot \|_F$) representing an element $\phi \in H$. Then

$$\| \phi_\mu - \phi_\nu \|_{L^2} \leq \| \phi_\mu - \phi_\nu \|_F \to 0 \text{ as } \mu, \nu \to \infty$$

So $\{ \phi_\mu \}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty (\mathcal{M}, \mathbb{C}^n)$ with respect to the L^2 inner product: its class also represents an element of L^2.
We may view \(C_c^\infty(\tilde{M}, \mathbb{C}^n) \) as a subset (a dense subset) of \(H \).

The inclusion \(\iota : C_c^\infty(\tilde{M}, \mathbb{C}^n) \rightarrow L^2(M, \mathbb{C}^n) \) extends to a continuous map \(\iota : H \rightarrow L^2(M, \mathbb{C}^n) \):

Suppose \(\{\phi_\mu\}_{\mu=1}^\infty \) is a Cauchy sequence in \(C_c^\infty(\tilde{M}, \mathbb{C}^n) \) (with respect to \(\|\cdot\|_F \)) representing an element \(\phi \in H \). Then

\[
\|\phi_\mu - \phi_\nu\|_2 \leq \|\phi_\mu - \phi_\nu\|_F \rightarrow 0 \text{ as } \mu, \nu \rightarrow \infty
\]

So \(\{\phi_\mu\}_{\mu=1}^\infty \) is a Cauchy sequence in \(C_c^\infty(\tilde{M}, \mathbb{C}^n) \) with respect to the \(L^2 \) inner product: its class also represents an element of \(L^2 \). This element is independent of the representative of \(\phi \), so there is a well defined element \(\iota \phi \) associated to \(\phi \). The map thus defined is continuous.
We may view $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$ as a subset (a dense subset) of H.

The inclusion $\iota : C_c^\infty(\mathcal{M}, \mathbb{C}^n) \to L^2(\mathcal{M}, \mathbb{C}^n)$ extends to a continuous map $\iota : H \to L^2(\mathcal{M}, \mathbb{C}^n)$:

Suppose $\{\phi_\mu\}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$ (with respect to $\|\cdot\|_F$) representing an element $\phi \in H$. Then

$$\|\phi_\mu - \phi_\nu\|_L^2 \leq \|\phi_\mu - \phi_\nu\|_F \to 0 \text{ as } \mu, \nu \to \infty$$

So $\{\phi_\mu\}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$ with respect to the L^2 inner product: its class also represents an element of L^2. This element is independent of the representative of ϕ, so there is a well defined element $\iota \phi$ associated to ϕ. The map thus defined is continuous.

The map ι is injective: To say that $\iota \phi = 0$ is to say that there is a Cauchy sequence $\{\phi_\mu\}$ in C_c^∞ (with respect to $\|\cdot\|_F$) which is equivalent to the zero sequence in the L^2-norm, that is, $\|\phi_\mu - 0\|_{L^2} \to 0$ as $\mu \to \infty$.

G. A. Mendoza (Temple University)
We may view $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$ as a subset (a dense subset) of H.

The inclusion $\iota: C_c^\infty(\mathcal{M}, \mathbb{C}^n) \rightarrow L^2(\mathcal{M}, \mathbb{C}^n)$ extends to a continuous map $\iota: H \rightarrow L^2(\mathcal{M}, \mathbb{C}^n)$:

Suppose $\{\phi_\mu\}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$ (with respect to $\| \cdot \|_F$) representing an element $\phi \in H$. Then

$$\|\phi_\mu - \phi_\nu\|_{L^2} \leq \|\phi_\mu - \phi_\nu\|_F \rightarrow 0 \text{ as } \mu, \nu \rightarrow \infty$$

So $\{\phi_\mu\}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty(\mathcal{M}, \mathbb{C}^n)$ with respect to the L^2 inner product: its class also represents an element of L^2. This element is independent of the representative of ϕ, so there is a well defined element $\iota \phi$ associated to ϕ. The map thus defined is continuous.

The map ι is injective: To say that $\iota \phi = 0$ is to say that there is a Cauchy sequence $\{\phi_\mu\}$ in C_c^∞ (with respect to $\| \cdot \|_F$) which is equivalent to the zero sequence in the L^2-norm, that is, $\|\phi_\mu - 0\|_{L^2} \rightarrow 0$ as $\mu \rightarrow \infty$. Fix any $\psi \in C_c^\infty$. Then

$$(A\psi, \phi_\nu)_{L^2}, (\psi, \phi_\nu)_{L^2} \rightarrow 0 \text{ as } \nu \rightarrow \infty$$
We may view $C_c^\infty(\hat{M}, \mathbb{C}^n)$ as a subset (a dense subset) of H.

The inclusion $\iota : C_c^\infty(\hat{M}, \mathbb{C}^n) \rightarrow L^2(\mathcal{M}, \mathbb{C}^n)$ extends to a continuous map $\iota : H \rightarrow L^2(\mathcal{M}, \mathbb{C}^n)$:

Suppose $\{\phi_\mu\}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty(\hat{M}, \mathbb{C}^n)$ (with respect to $\|\cdot\|_F$) representing an element $\phi \in H$. Then

$$\|\phi_\mu - \phi_\nu\|_{L^2} \leq \|\phi_\mu - \phi_\nu\|_F \rightarrow 0 \text{ as } \mu, \nu \rightarrow \infty$$

So $\{\phi_\mu\}_{\mu=1}^\infty$ is a Cauchy sequence in $C_c^\infty(\hat{M}, \mathbb{C}^n)$ with respect to the L^2 inner product: its class also represents an element of L^2. This element is independent of the representative of ϕ, so there is a well defined element $\iota \phi$ associated to ϕ. The map thus defined is continuous.

The map ι is injective: To say that $\iota \phi = 0$ is to say that there is a Cauchy sequence $\{\phi_\mu\}$ in C_c^∞ (with respect to $\|\cdot\|_F$) which is equivalent to the zero sequence in the L^2-norm, that is, $\|\phi_\mu - 0\|_{L^2} \rightarrow 0$ as $\mu \rightarrow \infty$. Fix any $\psi \in C_c^\infty$. Then

$$\langle A\psi, \phi_\nu \rangle_{L^2}, \langle \psi, \phi_\nu \rangle_{L^2} \rightarrow 0 \text{ as } \nu \rightarrow \infty$$

so $\langle \psi, \phi_\mu \rangle_F \rightarrow 0$, hence $\langle \psi, \phi \rangle_F = 0$. By continuity $\langle \phi, \phi \rangle_F = 0$, so $\phi = 0$.

G. A. Mendoza (Temple University)
Fix \(f \in L^2 \), let \(u \in H \). Then

\[
| (u, f)_{L^2} | \leq \| u \|_{L^2} \| f \|_{L^2} \leq \| f \|_{L^2} \| u \|_F
\]

so the map \(H \ni u \mapsto (u, f)_{L^2} \in \mathbb{C} \) is continuous. By the Riesz Representation Theorem, there is a unique \(Bf \in H \) such that

\[
(u, f)_{L^2} = (u, Bf)_F \quad \forall u \in H \text{ and } \| Bf \|_F \leq \| f \|_{L^2}
\]
Fix $f \in L^2$, let $u \in H$. Then
\[(u, f)_{L^2} \leq \|u\|_{L^2} \|f\|_{L^2} \leq \|f\|_{L^2} \|u\|_F\]
so the map $H \ni u \mapsto (u, f)_{L^2} \in \mathbb{C}$ is continuous. By the Riesz Representation Theorem, there is a unique $Bf \in H$ such that
\[(u, f)_{L^2} = (u, Bf)_F \quad \forall u \in H \text{ and } \|Bf\|_F \leq \|f\|_{L^2}\]
B is injective: If $Bf = 0$, then $(u, f)_{L^2} = 0$ for all $u \in H$, in particular all $u \in C^\infty_c$. Since C^∞_c is dense in L^2, $f = 0$.

\[\text{G. A. Mendoza (Temple University)}\]

\[\text{State College, August 2010} \quad 8 / 18\]
Fix $f \in L^2$, let $u \in H$. Then
\[
|(u, f)_{L^2}| \leq \|u\|_{L^2} \|f\|_{L^2} \leq \|f\|_{L^2} \|u\|_F
\]
so the map $H \ni u \mapsto (u, f)_{L^2} \in \mathbb{C}$ is continuous. By the Riesz Representation Theorem, there is a unique $Bf \in H$ such that
\[
(u, f)_{L^2} = (u, Bf)_F \quad \forall u \in H \text{ and } \|Bf\|_F \leq \|f\|_{L^2}
\]
B is injective: If $Bf = 0$, then $(u, f)_{L^2} = 0$ for all $u \in H$, in particular all $u \in C^\infty_c$. Since C^∞_c is dense in L^2, $f = 0$. B is selfadjoint as an operator $L^2 \to L^2$:
\[
(Bf, g)_{L^2} = (Bf, Bg)_F = (Bg, Bf)_F = (Bg, f)_{L^2} = (f, Bg)_{L^2} \quad \forall f, g \in L^2.
\]
Fix $f \in L^2$, let $u \in H$. Then
\[
|(u, f)_{L^2}| \leq \|u\|_{L^2} \|f\|_{L^2} \leq \|f\|_{L^2} \|u\|_F
\]
so the map $H \ni u \mapsto (u, f)_{L^2} \in \mathbb{C}$ is continuous. By the Riesz Representation Theorem, there is a unique $Bf \in H$ such that
\[
(u, f)_{L^2} = (u, Bf)_F \quad \forall u \in H \text{ and } \|Bf\|_F \leq \|f\|_{L^2}
\]

B is injective: If $Bf = 0$, then $(u, f)_{L^2} = 0$ for all $u \in H$, in particular all $u \in C_c^\infty$. Since C_c^∞ is dense in L^2, $f = 0$. B is selfadjoint as an operator $L^2 \to L^2$:
\[
(Bf, g)_{L^2} = (Bf,Bg)_F = \overline{(Bg, Bf)_F} = \overline{(Bg, f)_{L^2}} = (f, Bg)_{L^2} \quad \forall f, g \in L^2.
\]

The orthogonal of the range of $B : L^2 \to L^2$ is the kernel of B^*. But $B^* = B$, which is injective. So B has dense range, that is $D_F \subset H$ is a dense subspace of L^2.

Fix $f \in L^2$, let $u \in H$. Then
\[(u, f)_{L^2} \leq \|u\|_{L^2} \|f\|_{L^2} \leq \|f\|_{L^2} \|u\|_F\]
so the map $H \ni u \mapsto (u, f)_{L^2} \in \mathbb{C}$ is continuous. By the Riesz Representation Theorem, there is a unique $Bf \in H$ such that
\[(u, f)_{L^2} = (u, Bf)_F \quad \forall u \in H \text{ and } \|Bf\|_F \leq \|f\|_{L^2}.
B$ is injective: If $Bf = 0$, then $(u, f)_{L^2} = 0$ for all $u \in H$, in particular all $u \in C^\infty_c$. Since C^∞_c is dense in L^2, $f = 0$. B is selfadjoint as an operator $L^2 \to L^2$:
\[(Bf, g)_{L^2} = (Bf, Bg)_F = (Bg, Bf)_F = (Bg, f)_{L^2} = (f, Bg)_{L^2} \quad \forall f, g \in L^2.\]
The orthogonal of the range of $B : L^2 \to L^2$ is the kernel of B^*. But $B^* = B$, which is injective. So B has dense range, that is $D_F \subset H$ is a dense subspace of L^2.

Fix $f \in L^2$, let $\psi \in C^\infty_c$ be arbitray. Then
\[(Bf, A^*\phi)_{L^2} = (Bf, A\phi)_{L^2} = (A\phi, Bf)_{L^2} = (\phi, Bf)_F = (A\phi, f)_{L^2} = (f, \phi)_{L^2}\]
Fix $f \in L^2$, let $u \in H$. Then

$$|(u, f)_{L^2}| \leq \|u\|_{L^2} \|f\|_{L^2} \leq \|f\|_{L^2} \|u\|_F$$

so the map $H \ni u \mapsto (u, f)_{L^2} \in \mathbb{C}$ is continuous. By the Riesz Representation Theorem, there is a unique $Bf \in H$ such that

$$(u, f)_{L^2} = (u, Bf)_F \ \forall u \in H \text{ and } \|Bf\|_F \leq \|f\|_{L^2}$$

B is injective: If $Bf = 0$, then $(u, f)_{L^2} = 0$ for all $u \in H$, in particular all $u \in C_c^\infty$. Since C_c^∞ is dense in L^2, $f = 0$. B is selfadjoint as an operator $L^2 \to L^2$:

$$(Bf, g)_{L^2} = (Bf, Bg)_F = (Bg, Bf)_F = (Bg, f)_{L^2} = (f, Bg)_{L^2} \ \forall f, g \in L^2.$$

The orthogonal of the range of $B : L^2 \to L^2$ is the kernel of B^*. But $B^* = B$, which is injective. So B has dense range, that is $\mathcal{D}_F \subset H$ is a dense subspace of L^2.

Fix $f \in L^2$, let $\psi \in C_c^\infty$ be arbitrary. Then

$$(Bf, A^*\phi)_{L^2} = (Bf, A\phi)_{L^2} = (A\phi, Bf)_{L^2} = (\phi, Bf)_F = (A\phi, f)_{L^2} = (f, \phi)_{L^2}$$

so $Bf \in \mathcal{D}_{\text{max}}(A)$ and $ABf = f$ by definition. Therefore $Bf \in \mathcal{D}_{\text{max}}(A)$.

Thus $\mathcal{D}_F \subset \mathcal{D}_{\text{max}}(A)$.
Also $\mathcal{D}_{\min} \subset \mathcal{D}_F$ (thus A with domain \mathcal{D}_F is truly an extension of A_{\min}):
Also $D_{\text{min}} \subset D_F$ (thus A with domain D_F is truly an extension of A_{min}):

Fix $\phi \in C_c^\infty$, take $\psi \in C_c^\infty$ arbitrary.

\[(B(A\phi), \psi)_{L^2} = (A\phi, B\psi)_{L^2} = (\phi, B\psi)_F = (\phi, \psi)_{L^2}\]
Also $\mathcal{D}_{\text{min}} \subset \mathcal{D}_F$ (thus A with domain \mathcal{D}_F is truly an extension of A_{min}):

Fix $\phi \in C_c^\infty$, take $\psi \in C_c^\infty$ arbitrary.

$$(B(A\phi), \psi)_{L^2} = (A\phi, B\psi)_{L^2} = (\phi, B\psi)_F = (\phi, \psi)_{L^2}$$

The consequence of this is that $BA\phi = \phi$,

Also $\mathcal{D}_{\text{min}} \subset \mathcal{D}_F$ (thus A with domain \mathcal{D}_F is truly an extension of A_{min}):

Fix $\phi \in C_c^\infty$, take $\psi \in C_c^\infty$ arbitrary.

$$(B(A\phi), \psi)_{L^2} = (A\phi, B\psi)_{L^2} = (\phi, B\psi)_F = (\phi, \psi)_{L^2}$$

The consequence of this is that $BA\phi = \phi$, so $\phi \in \text{rg } B = \mathcal{D}_F$. Thus $C_c^\infty \subset \mathcal{D}_F$.

Also $D_{\text{min}} \subset D_F$ (thus A with domain D_F is truly an extension of A_{min}):

Fix $\phi \in C_c^\infty$, take $\psi \in C_c^\infty$ arbitrary.

\[(B(A\phi), \psi)_{L^2} = (A\phi, B\psi)_{L^2} = (\phi, B\psi)_F = (\phi, \psi)_{L^2}\]

The consequence of this is that $BA\phi = \phi$, so $\phi \in \text{rg } B = D_F$. Thus $C_c^\infty \subset D_F$. Suppose $\{\phi_\mu\}_{\mu=1}^\infty \subset C_c^\infty$ converges in D_{max} to ϕ.

G. A. Mendoza (Temple University)
Also $\mathcal{D}_{\text{min}} \subset \mathcal{D}_F$ (thus A with domain \mathcal{D}_F is truly an extension of A_{min}):

Fix $\phi \in \mathcal{C}_c^\infty$, take $\psi \in \mathcal{C}_c^\infty$ arbitrary.

$$\langle B(A\phi), \psi \rangle_{L^2} = \langle A\phi, B\psi \rangle_{L^2} = \langle \phi, B\psi \rangle_F = \langle \phi, \psi \rangle_{L^2}$$

The consequence of this is that $BA\phi = \phi$, so $\phi \in \text{rg } B = \mathcal{D}_F$. Thus $\mathcal{C}_c^\infty \subset \mathcal{D}_F$. Suppose $\{\phi_\mu\}_{\mu=1}^\infty \subset \mathcal{C}_c^\infty$ converges in \mathcal{D}_{max} to ϕ (so $\phi \in \mathcal{D}_{\text{min}}$). This means that $\{\phi_\mu\}_{\mu=1}^\infty$ and $\{A\phi_\mu\}_{\mu=1}^\infty$ converge in L^2, hence $\{\phi_\mu\}_{\mu=1}^\infty$ is a Cauchy sequence with respect to $\| \cdot \|_F$:

$$\| \phi_\mu - \phi_\nu \|_F^2 = \langle \phi_\mu - \phi_\nu, \phi_\mu - \phi_\nu \rangle_F = \langle A\phi_\mu - A\phi_\nu, \phi_\mu - \phi_\nu \rangle_{L^2}^2$$

$$\leq \| A\phi_\mu - A\phi_\nu \|_{L^2} \| \phi_\mu - \phi_\nu \|_{L^2} \to 0 \text{ as } \mu, \nu \to \infty.$$
Finally, A with domain D_F is selfadjoint:
Finally, A with domain D_F is selfadjoint: Let $u, v \in D_F$. Then

$$(Au, v)_{L^2} = (u, v)_F = (v, u)_F = (Av, u)_F = (u, Av)_{L^2}$$

gives that A with domin D_F is symmetric.
Finally, A with domain \mathcal{D}_F is selfadjoint: Let $u, v \in \mathcal{D}_F$. Then

$$(Au, v)_{L^2} = (u, v)_F = (v, u)_F = (Av, u)_F = (u, Av)_{L^2}$$

gives that A with domain D_F is symmetric.

Suppose now that $u \in \mathcal{D}^*_F$. Thus $Av \in L^2$ and

$$(Au, v)_{L^2} = (u, Av)_{L^2} \quad \forall u \in \mathcal{D}_F.$$
Finally, A with domain \mathcal{D}_F is selfadjoint: Let $u, v \in \mathcal{D}_F$. Then

$$(Au, v)_{L^2} = (u, v)_F = (v, u)_F = (Av, u)_F = (u, Av)_{L^2}$$

gives that A with domain \mathcal{D}_F is symmetric.

Suppose now that $u \in \mathcal{D}_F^*$. Thus $Av \in L^2$ and

$$(Au, v)_{L^2} = (u, Av)_{L^2} \quad \forall u \in \mathcal{D}_F.$$

When $u \in \mathcal{D}_F$,

$$(u, Av)_{L^2} = (u, BAv)_F = (Au, BAv)_{L^2}$$

Since A is surjective when given the domain \mathcal{D}_F, $(Au, v)_{L^2} = (Au, BAv)_{L^2}$ for all $u \in \mathcal{D}_F$ implies $v = BAv$, with the consequence that $v \in \text{rg } B = D_F$. So $\mathcal{D}_F^* \subset \mathcal{D}_F$, hence $A_{\mathcal{D}_F}$ is selfadjoint.

Since $\mathcal{D}_{\text{min}} \subset \mathcal{D}_F \subset \mathcal{D}_{\text{max}}$, we have

$$\mathcal{D}_F = D_F + \mathcal{D}_{\text{min}}, \quad D_F \subset \mathcal{E}.$$
Finally, A with domain \mathcal{D}_F is selfadjoint: Let $u, \nu \in \mathcal{D}_F$. Then

$$(Au, \nu)_{L^2} = (u, \nu)_F = (\nu, u)_F = (Av, u)_F = (u, Av)_{L^2}$$

gives that A with domain \mathcal{D}_F is symmetric.

Suppose now that $u \in \mathcal{D}_F^\ast$. Thus $Av \in L^2$ and

$$(Au, \nu)_{L^2} = (u, Av)_{L^2} \quad \forall u \in \mathcal{D}_F.$$

When $u \in \mathcal{D}_F$,

$$(u, Av)_{L^2} = (u, BAv)_F = (Au, BAv)_{L^2}$$

Since A is surjective when given the domain \mathcal{D}_F, $(Au, \nu)_{L^2} = (Au, BAv)_{L^2}$ for all $u \in \mathcal{D}_F$ implies $\nu = BAv$, with the consequence that $\nu \in \text{rg } B = \mathcal{D}_F$. So $\mathcal{D}_F^\ast \subset \mathcal{D}_F$, hence $A_{\mathcal{D}_F}$ is selfadjoint.

Since $\mathcal{D}_{\text{min}} \subset \mathcal{D}_F \subset \mathcal{D}_{\text{max}}$, we have

$$\mathcal{D}_F = \mathcal{D}_F + \mathcal{D}_{\text{min}}, \quad \mathcal{D}_F \subset \mathcal{E}.$$

\mathcal{E} is the orthogonal of \mathcal{D}_{min} in \mathcal{D}_{max}.

G. A. Mendoza (Temple University)
Domains of extensions
State College, August 2010
10 / 18
The spectrum of the Friedrichs extension

Suppose A is semibounded on C_c^∞: There is C such that

$$(A\phi, \phi) \geq C\|\phi\|^2 \text{ if } \phi \in C_c^\infty.$$
The spectrum of the Friedrichs extension

Suppose A is semibounded on C_c^∞: There is C such that

$$(A\phi, \phi) \geq C\|\phi\|^2 \text{ if } \phi \in C_c^\infty.$$

So $\{(A\phi, \phi) : \phi \in C_c^\infty, \|\phi\| = 1\}$ is bounded below.
The spectrum of the Friedrichs extension

Suppose \(A \) is semibounded on \(C_\infty^c \): There is \(C \) such that

\[
(A\phi, \phi) \geq C\|\phi\|^2 \text{ if } \phi \in C_\infty^c.
\]

So \(\{(A\phi, \phi) : \phi \in C_\infty^c, \|\phi\| = 1\} \) is bounded below. Let \(c_0 \) be the infimum. Then

\[
(A\phi, \phi) \geq c_0\|\phi\|^2 \text{ if } \phi \in C_\infty^c.
\]
The spectrum of the Friedrichs extension

Suppose A is semi-bounded on C_c^∞: There is C such that

$$(A\phi, \phi) \geq C\|\phi\|^2 \text{ if } \phi \in C_c^\infty.$$

So $\{(A\phi, \phi) : \phi \in C_c^\infty, \|\phi\| = 1\}$ is bounded below. Let c_0 be the infimum. Then

$$(A\phi, \phi) \geq c_0\|\phi\|^2 \text{ if } \phi \in C_c^\infty.$$

Let \mathcal{D}_F be the domain of the Friedrichs extension of $A - c_0 + 1$.

G. A. Mendoza (Temple University)

Domains of extensions

State College, August 2010 11 / 18
The spectrum of the Friedrichs extension

Suppose A is semibounded on C_c^∞: There is C such that

$$(A\phi, \phi) \geq C\|\phi\|^2 \text{ if } \phi \in C_c^\infty.$$

So $\{(A\phi, \phi) : \phi \in C_c^\infty, \|\phi\| = 1\}$ is bounded below. Let c_0 be the infimum. Then

$$(A\phi, \phi) \geq c_0\|\phi\|^2 \text{ if } \phi \in C_c^\infty.$$

Let \mathcal{D}_F be the domain of the Friedrichs extension of $A - c_0 + 1$. It is easy to see that A with domain \mathcal{D}_F is selfadjoint.
The spectrum of the Friedrichs extension

Suppose A is semibounded on C_c^∞: There is C such that

$$(A\phi, \phi) \geq C\|\phi\|^2 \text{ if } \phi \in C_c^\infty.$$

So $\{(A\phi, \phi) : \phi \in C_c^\infty, \|\phi\| = 1\}$ is bounded below. Let c_0 be the infimum. Then

$$(A\phi, \phi) \geq c_0\|\phi\|^2 \text{ if } \phi \in C_c^\infty.$$

Let \mathcal{D}_F be the domain of the Friedrichs extension of $A - c_0 + 1$. It is easy to see that A with domain \mathcal{D}_F is selfadjoint. Further, if $u \in \mathcal{D}_F$, then

$$((A - c_0 + 1)u, u)_F \geq \|u\|^2,$$

hence

$$(Au, u) \geq c_0\|u\|^2.$$
The spectrum of the Friedrichs extension

Suppose \(A \) is semibounded on \(C_c^\infty \): There is \(C \) such that

\[
(A\phi, \phi) \geq C\|\phi\|^2 \text{ if } \phi \in C_c^\infty.
\]

So \(\{(A\phi, \phi) : \phi \in C_c^\infty, \|\phi\| = 1\} \) is bounded below. Let \(c_0 \) be the infimum. Then

\[
(A\phi, \phi) \geq c_0\|\phi\|^2 \text{ if } \phi \in C_c^\infty.
\]

Let \(\mathcal{D}_F \) be the domain of the Friedrichs extension of \(A - c_0 + 1 \). It is easy to see that \(A \) with domain \(\mathcal{D}_F \) is selfadjoint. Further, if \(u \in \mathcal{D}_F \), then

\[
((A - c_0 + 1)u, u)_F \geq \|u\|^2,
\]

hence

\[
(Au, u) \geq c_0\|u\|^2.
\]

So the estimate (†) is preserved by passing to the Friedrichs extension.
The spectrum of A_{DF} is a subset of the real numbers.

$$\text{spec}(A_{DF}) \text{ is bounded from below by } c_0.$$
The spectrum of A_{DF} is a subset of the real numbers.

\[\text{spec}(A_{DF}) \text{ is bounded from below by } c_0. \]

Proof: Each point of $\text{spec}(A_{DF})$ is an eigenvalue. Let $\lambda \in \text{spec}(A_{DF})$, $\psi \in DF$, $\psi \neq 0$, such that $A\psi = \lambda \psi$.
The spectrum of A_{DF} is a subset of the real numbers.

\[\text{spec}(A_{DF}) \text{ is bounded from below by } c_0. \]

Proof: Each point of $\text{spec}(A_{DF})$ is an eigenvalue. Let $\lambda \in \text{spec}(A_{DF})$, $\psi \in D_F$, $\psi \neq 0$, such that $A\psi - \lambda\psi$. Then

\[c_0\|\psi\|^2 \leq (A\psi, \psi) \]
The spectrum of A_{DF} is a subset of the real numbers.

\textit{spec}(A_{DF}) \textit{is bounded from below by} c_0.

\textbf{Proof}: Each point of \textit{spec}(A_{DF}) is an eigenvalue. Let $\lambda \in \textit{spec}(A_{DF})$, $\psi \in D_F$, $\psi \neq 0$, such that $A\psi - \lambda \psi$. Then

$$c_0 \|\psi\|^2 \leq (A\psi, \psi) = (\lambda \psi, \psi) = \lambda \|\psi\|^2$$
The spectrum of A_{DF} is a subset of the real numbers.

spec(A_{DF}) is bounded from below by c_0.

Proof: Each point of spec(A_{DF}) is an eigenvalue. Let $\lambda \in \text{spec}(A_{DF})$, $\psi \in D_F$, $\psi \neq 0$, such that $A\psi - \lambda \psi$. Then

$$c_0 \|\psi\|^2 \leq (A\psi, \psi) = (\lambda \psi, \psi) = \lambda \|\psi\|^2$$

so $c_0 \leq \lambda$. □
The spectrum of A_{DF} is a subset of the real numbers.

spec(A_{DF}) is bounded from below by c_0.

Proof: Each point of spec(A_{DF}) is an eigenvalue. Let $\lambda \in$ spec(A_{DF}), $\psi \in DF$, $\psi \neq 0$, such that $A\psi - \lambda\psi$. Then

$$c_0\|\psi\|^2 \leq (A\psi, \psi) = (\lambda\psi, \psi) = \lambda\|\psi\|^2$$

so $c_0 \leq \lambda$.

Let $E_\lambda = \ker(A_{DF} - \lambda I)$. So E_λ is $\neq 0$ or $= 0$ depending on whether $\lambda \in$ spec(A_{DF}) or not. As in finite dimensional linear algebra

$E_\lambda \perp E_{\lambda'}$ if $\lambda \neq \lambda'$ in the L^2 sense
The spectrum of A_{DF} is a subset of the real numbers.

\[\text{spec}(A_{DF}) \text{ is bounded from below by } c_0. \]

Proof: Each point of $\text{spec}(A_{DF})$ is an eigenvalue. Let $\lambda \in \text{spec}(A_{DF})$, $\psi \in \mathcal{D}_F$, $\psi \neq 0$, such that $A\psi - \lambda \psi$. Then

\[c_0 \|\psi\|^2 \leq (A\psi, \psi) = (\lambda \psi, \psi) = \lambda \|\psi\|^2 \]

so $c_0 \leq \lambda$. \[\square \]

Let $\mathcal{E}_\lambda = \ker(A_{DF} - \lambda I)$. So \mathcal{E}_λ is \(\neq 0 \) or \(= 0 \) depending on whether $\lambda \in \text{spec}(A_{DF})$ or not. As in finite dimensional linear algebra

\[\mathcal{E}_\lambda \perp \mathcal{E}_{\lambda^\prime} \text{ if } \lambda \neq \lambda' \text{ in the } L^2 \text{ sense} \]

Let λ_k be a listing of the elements of $\text{spec}(A_{DF})$, $\{\lambda_k\}_{k=0}^{\infty}$ monotonically increasing, with a given element λ of $\text{spec}(A_{DF})$ repeated as many times as $\dim \mathcal{E}_\lambda$.
The spectrum of A_{DF} is a subset of the real numbers.

$$\text{spec}(A_{DF}) \text{ is bounded from below by } c_0.$$

Proof: Each point of $\text{spec}(A_{DF})$ is an eigenvalue. Let $\lambda \in \text{spec}(A_{DF})$, $\psi \in D_F$, $\psi \neq 0$, such that $A\psi - \lambda \psi$. Then

$$c_0 \|\psi\|^2 \leq (A\psi, \psi) = (\lambda \psi, \psi) = \lambda \|\psi\|^2$$

so $c_0 \leq \lambda$. \qed

Let $E_\lambda = \ker(A_{DF} - \lambda I)$. So E_λ is $\neq 0$ or $= 0$ depending on whether $\lambda \in \text{spec}(A_{DF})$ or not. As in finite dimensional linear algebra

$$E_\lambda \perp E_{\lambda'} \text{ if } \lambda \neq \lambda' \text{ in the } L^2 \text{ sense}$$

Let λ_k be a listing of the elements of $\text{spec}(A_{DF})$, $\{\lambda_k\}_{k=0}^\infty$ monotonically increasing, with a given element λ of $\text{spec}(A_{DF})$ repeated as many times as $\dim E_\lambda$. Associated to this listing there is an L^2-orthonormal system $\psi_k \in D_F$ of eigenfunctions, $A\psi_k = \lambda_k \psi_k$.
The spectrum of A_{DF} is a subset of the real numbers.

$$\text{spec}(A_{DF}) \text{ is bounded from below by } c_0.$$

Proof: Each point of $\text{spec}(A_{DF})$ is an eigenvalue. Let $\lambda \in \text{spec}(A_{DF})$, $\psi \in D_F$, $\psi \neq 0$, such that $A\psi - \lambda \psi$. Then

$$c_0 \|\psi\|^2 \leq (A\psi, \psi) = (\lambda \psi, \psi) = \lambda \|\psi\|^2$$

so $c_0 \leq \lambda$.

Let $E_\lambda = \ker(A_{DF} - \lambda I)$. So E_λ is $\neq 0$ or $= 0$ depending on whether $\lambda \in \text{spec}(A_{DF})$ or not. As in finite dimensional linear algebra

$$E_\lambda \perp E_{\lambda'} \text{ if } \lambda \neq \lambda' \text{ in the } L^2 \text{ sense}$$

Let λ_k be a listing of the elements of $\text{spec}(A_{DF})$, \{\lambda_k\}_k^{\infty}$ monotonically increasing, with a given element λ of $\text{spec}(A_{DF})$ repeated as many times as $\dim E_\lambda$. Associated to this listing there is an L^2-orthonormal system $\psi_k \in D_F$ of eigenfunctions, $A\psi_k = \lambda_k \psi_k$.

By a general theorem,

the ψ_k form a complete orthonormal system for L^2.
If \(u \in \mathcal{D}_F \) then

\[
 u = \sum_{k=0}^{\infty} (u, \psi_k) \psi_k, \quad Au = \sum_{k=0}^{\infty} \lambda_k (u, \psi_k) \psi_k
\]

both series with convergence in \(L^2 \).
If \(u \in D_F \) then

\[
 u = \sum_{k=0}^{\infty} (u, \psi_k) \psi_k, \quad Au = \sum_{k=0}^{\infty} \lambda_k (u, \psi_k) \psi_k
\]

both series with convergence in \(L^2 \). We have

\[
 (Au, u) = \sum_{k=0}^{\infty} \lambda_k |(u, \psi_k)|^2 \geq \lambda_0 \sum_{k=0}^{\infty} |(u, \psi_k)|^2 = \lambda_0 \|u\|^2
\]

So \(\lambda_0 \leq c_0 \).
If \(u \in \mathcal{D}_F \) then

\[
u = \sum_{k=0}^{\infty} (u, \psi_k) \psi_k, \quad Au = \sum_{k=0}^{\infty} \lambda_k (u, \psi_k) \psi_k
\]

both series with convergence in \(L^2 \). We have

\[
c_0 = \inf \{(Au, u) : u \in \mathcal{D}_F, \|u\| = 1\}
\]

\[
(Au, u) = \sum_{k=0}^{\infty} \lambda_k |(u, \psi_k)|^2 \geq \lambda_0 \sum_{k=0}^{\infty} |(u, \psi_k)|^2 = \lambda_0 \|u\|^2
\]

So \(\lambda_0 \leq c_0 \).
If $u \in \mathcal{D}_F$ then

$$u = \sum_{k=0}^{\infty} (u, \psi_k) \psi_k, \quad Au = \sum_{k=0}^{\infty} \lambda_k (u, \psi_k) \psi_k$$

both series with convergence in L^2. We have

$$c_0 = \inf \{(Au, u) : u \in \mathcal{D}_F, \|u\| = 1\}$$

$$\sum_{k=0}^{\infty} \lambda_k |(u, \psi_k)|^2 \geq \lambda_0 \sum_{k=0}^{\infty} |(u, \psi_k)|^2 = \lambda_0 \|u\|^2$$

So $\lambda_0 \leq c_0$. Therefore $c_0 = \lambda_0$.
Resolvent family

Suppose \(\lambda \not\in \text{spec}(A_D) \), so \(\lambda \in \text{bg-res}(A) \), since \(\text{bg-spec}(A) \subset \text{spec}(A_D) \).

Suppose \(\lambda \not\in \text{spec}(A_D) \), \(u \in D_F \) and \((A - \lambda I)u = f \). Then

\[
u = \sum_k u_k \psi_k, \quad (A - \lambda I)u = \sum_k (\lambda_k - \lambda)u_k \psi_k = \sum_k f_k \psi_k\]

Thus \(u_k = f_k / (\lambda_k - \lambda) \) and \(u = \sum_k (f_k, \psi_k) \lambda_k - \lambda \psi_k \).

Define \(B_F(\lambda) : L^2 \rightarrow D_F \),

\[
B_F(\lambda)f = \sum_{k=0}^{\infty} (f, \psi_k) \lambda_k - \lambda \psi_k.
\]

The family \(B_F(\lambda) \) is the resolvent family of \(A_D \).
Resolvent family

so $\lambda \in \text{bg-res}(A)$, since $\text{bg-spec}(A) \subset \text{spec}(A_{DF})$

Suppose $\lambda \notin \text{spec}(A_{DF})$, $u \in D_F$ and $(A - \lambda I)u = f$. Then

$$u = \sum_k u_k \psi_k, \quad (A - \lambda I)u = \sum_k (\lambda_k - \lambda) u_k \psi_k = \sum_k f_k \psi_k$$

Thus $u_k = f_k / (\lambda_k - \lambda)$ and

$$u = \sum_k \frac{(f, \psi_k)}{\lambda_k - \lambda} \psi_k.$$
Resolvent family

Suppose \(\lambda \notin \text{spec}(A_{D_F}) \), \(u \in D_F \) and \((A - \lambda I)u = f\). Then

\[
u = \sum_k u_k \psi_k, \quad (A - \lambda I)u = \sum_k (\lambda_k - \lambda) u_k \psi_k = \sum_k f_k \psi_k
\]

Thus \(u_k = f_k / (\lambda_k - \lambda) \) and

\[
u = \sum_k \frac{(f, \psi_k)}{\lambda_k - \lambda} \psi_k.
\]

Define

\[
B_F(\lambda) : L^2 \rightarrow D_F, \quad B_F(\lambda)f = \sum_{k=0}^{\infty} \frac{(f, \psi_k)}{\lambda_k - \lambda} \psi_k.
\]

The family \(B_F(\lambda) \) is the resolvent family of \(A_{D_F} \).
The spaces \mathcal{K}_λ

$$B_F(\lambda)f = \sum_{k=0}^{\infty} \frac{(f, \psi_k)}{\lambda_k - \lambda} \psi_k$$

$$\mathcal{D}_F = D_F + \mathcal{D}_{\min}, \ D_F \subset \mathcal{E}$$

$$D_{aF} = \text{orthogonal of } D_F \text{ in } \mathcal{E}$$

$$\pi_{\mathcal{D}_F} : \mathcal{D}_{\max} \rightarrow \mathcal{D}_{\max} \text{ is the orthogonal projection on } \mathcal{D}_F, \ \pi_{D_{aF}} = I - \pi_{\mathcal{D}_F}$$

is the ortho-projection on D_{aF}
The spaces \mathcal{K}_λ

Suppose $\lambda \in \text{bg-res}(A)$ and $\phi \in \mathcal{K}_\lambda$: $(A - \lambda I)\phi = 0$. Then

$$B_F(\lambda)f = \sum_{k=0}^{\infty} \frac{(f, \psi_k)}{\lambda_k - \lambda} \psi_k$$

$$\mathcal{D}_F = D_F + \mathcal{D}_{\text{min}}, D_F \subset \mathcal{E}$$
$$D_{aF} = \text{orthogonal of } D_F \text{ in } \mathcal{E}$$
$$\pi_{\mathcal{D}_F} : \mathcal{D}_{\text{max}} \to \mathcal{D}_{\text{max}} \text{ is the orthogonal projection on } \mathcal{D}_F,$$
$$\pi_{D_{aF}} = I - \pi_{\mathcal{D}_F}$$

is the ortho-projection on D_{aF}.
The spaces \mathcal{K}_λ

Suppose $\lambda \in \text{bg-res}(A)$ and $\phi \in \mathcal{K}_\lambda$: $(A - \lambda I)\phi = 0$. Then

$$0 = (A - \lambda I)(\pi_{D_{af}} \phi + \pi_{D_F} \phi) = (A - \lambda I)\pi_{D_{af}} \phi + (A - \lambda I)\pi_{D_F} \phi$$

gives

$B_F(\lambda)f = \sum_{k=0}^{\infty} \frac{(f, \psi_k)}{\lambda_k - \lambda} \psi_k$
The spaces \mathcal{K}_λ

Suppose $\lambda \in \text{bg-res}(A)$ and $\phi \in \mathcal{K}_\lambda$: $(A - \lambda I)\phi = 0$. Then

$$0 = (A - \lambda I)(\pi_{D_{aF}} \phi + \pi_{D_F} \phi) = (A - \lambda I)\pi_{D_{aF}} \phi + (A - \lambda I)\pi_{D_F} \phi$$

gives

$$0 = B_F(\lambda)(A - \lambda I)\pi_{D_{aF}} \phi + B_F(\lambda)(A - \lambda I)\pi_{D_F} \phi.$$

$D_F = D_F + D_{\text{min}}$, $D_F \subseteq \mathcal{E}$

D_{aF} = orthogonal of D_F in \mathcal{E}

$\pi_{D_F} : D_{\text{max}} \rightarrow D_{\text{max}}$ is the orthogonal projection on D_F, $\pi_{D_{aF}} = I - \pi_{D_F}$ is the ortho-projection on D_{aF}
The spaces \mathcal{K}_λ

Suppose $\lambda \in \text{bg-res}(A)$ and $\phi \in \mathcal{K}_\lambda$: $(A - \lambda I)\phi = 0$. Then

$$0 = (A - \lambda I)(\pi_{D_{aF}} \phi + \pi_D \phi) = (A - \lambda I)\pi_{D_{aF}} \phi + (A - \lambda I)\pi_D \phi$$

gives

$$0 = B_F(\lambda)(A - \lambda I)\pi_{D_{aF}} \phi + B_F(\lambda)(A - \lambda I)\pi_D \phi.$$

Since $\pi_D \phi \in D_F$,

$$B_F(\lambda)(A - \lambda I)\pi_D \phi = \pi_D \phi.$$
The spaces K_λ

Suppose $\lambda \in \text{bg-res}(A)$ and $\phi \in K_\lambda$: $(A - \lambda I)\phi = 0$. Then

$$0 = (A - \lambda I)(\pi_{D_{aF}} \phi + \pi_D \phi) = (A - \lambda I)\pi_{D_{aF}} \phi + (A - \lambda I)\pi_D \phi$$

gives

$$0 = B_F(\lambda)(A - \lambda I)\pi_{D_{aF}} \phi + B_F(\lambda)(A - \lambda I)\pi_D \phi.$$

Since $\pi_D \phi \in D$,

$$B_F(\lambda)(A - \lambda I)\pi_D \phi = \pi_D \phi.$$

So

$$\pi_D \phi = -B_F(\lambda)(A - \lambda I)\pi_{D_{aF}} \phi,$$

$B_F(\lambda)f = \sum_{k=0}^{\infty} \frac{(f, \psi_k)}{\lambda_k - \lambda} \psi_k$
The spaces \mathcal{K}_λ

Suppose $\lambda \in \text{bg\text{-}res}(A)$ and $\phi \in \mathcal{K}_\lambda$: $(A - \lambda I)\phi = 0$. Then

$$0 = (A - \lambda I)(\pi_{D_{aF}} \phi + \pi_D \phi) = (A - \lambda I)\pi_{D_{aF}} \phi + (A - \lambda I)\pi_D \phi$$

gives

$$0 = B_F(\lambda)(A - \lambda I)\pi_{D_{aF}} \phi + B_F(\lambda)(A - \lambda I)\pi_D \phi.$$

Since $\pi_D \phi \in \mathcal{D}_F$,

$$B_F(\lambda)(A - \lambda I)\pi_D \phi = \pi_D \phi.$$

So

$$\pi_D \phi = -B_F(\lambda)(A - \lambda I)\pi_{D_{aF}} \phi, \quad \phi = \pi_{D_{aF}} \phi - B_F(\lambda)(A - \lambda I)\pi_{D_{sF}} \phi.$$

$\mathcal{D}_F = \mathcal{D}_F + \mathcal{D}_{\text{min}}, \mathcal{D}_F \subset \mathcal{E}$

\mathcal{D}_{aF} = orthogonal of \mathcal{D}_F in \mathcal{E}

$\pi_{\mathcal{D}_F} : \mathcal{D}_{\text{max}} \to \mathcal{D}_{\text{max}}$ is the orthogonal projection on \mathcal{D}_F, $\pi_{D_{aF}} = I - \pi_D$ is the ortho-projection on D_{aF}
The spaces \mathcal{K}_λ

Suppose $\lambda \in \text{bg-res}(A)$ and $\phi \in \mathcal{K}_\lambda$: $(A - \lambda I)\phi = 0$. Then

$$0 = (A - \lambda I)(\pi_{D_{aF}}\phi + \pi_{D_F}\phi) = (A - \lambda I)\pi_{D_{aF}}\phi + (A - \lambda I)\pi_{D_F}\phi$$

gives

$$0 = B_F(\lambda)(A - \lambda I)\pi_{D_{aF}}\phi + B_F(\lambda)(A - \lambda I)\pi_{D_F}\phi.$$

Since $\pi_{D_F}\phi \in D_F$,

$$B_F(\lambda)(A - \lambda I)\pi_{D_F}\phi = \pi_{D_F}\phi.$$

So

$$\pi_{D_F}\phi = -B_F(\lambda)(A - \lambda I)\pi_{D_{aF}}\phi, \quad \phi = \pi_{D_{aF}}\phi - B_F(\lambda)(A - \lambda I)\pi_{D_{sF}}\phi$$

Since $\dim D_{aF} = \dim \mathcal{K}_\lambda = \dim \pi_{\text{max}}\mathcal{K}_\lambda$, the elements of \mathcal{K}_λ are all of the form $u - B_F(\lambda)(A - \lambda I)u$ with $u \in D_{aF}$:

$$\mathcal{K}_\lambda = \{u - B_F(\lambda)(A - \lambda I)u : u \in D_{aF}\}, \quad \lambda \notin \text{spec}(A_{D_F}).$$
Let \(S : D_{aF} \to D_{aF} \) be selfadjoint (with respect to the \(A \)-inner product), let \(T = -AS : D_{aF} \to D_{F} \), and let

\[
D_T = \{ u + Tu : u \in D_{aF} \},
\]

an element of \(\mathcal{A} : A \) with domain \(\mathcal{D}_T = D_T + \mathcal{D}_{\text{min}} \) is selfadjoint.
Let $S : D_{aF} \to D_{aF}$ be selfadjoint (with respect to the A-inner product), let $T = -AS : D_{aF} \to D_F$, and let

$$D_T = \{ u + Tu : u \in D_{aF} \},$$

an element of \mathfrak{A}: A with domain $\mathcal{D}_T = D_T + \mathcal{D}_{\text{min}}$ is selfadjoint.

For $\lambda \in \text{res}(A_{DF})$

$$\mathcal{K}_\lambda = \{ u - B_F(\lambda)(A - \lambda I)u : u \in D_{aF} \}$$

Note that $\pi_{\text{max}}B_F(\lambda)(A - \lambda I)u \in D_F$

$$\pi_{\text{max}}\mathcal{K}_\lambda = \{ u - \pi_{\text{max}}B_F(\lambda)(A - \lambda)u : u \in D_{aF} \}.$$
Let $S : D_{aF} \to D_{aF}$ be selfadjoint (with respect to the A-inner product), let $T = -AS : D_{aF} \to D_F$, and let

$$D_T = \{u + Tu : u \in D_{aF}\},$$

an element of $\mathcal{S}A$: A with domain $\mathcal{D}_T = D_T + D_{\text{min}}$ is selfadjoint.

For $\lambda \in \text{res}(A_{DF})$

$$\pi_{\max} \mathcal{K}_\lambda = \{u - \pi_{\max} B_F(\lambda)(A - \lambda I)u : u \in D_{aF}\},$$

Note that $\pi_{\max} B_F(\lambda)(A - \lambda I)u \in D_F$

so, $D_T \cap \pi_{\max} \mathcal{K}_\lambda \neq 0$ if and only if there is $u \in D_{aF}$, $u \neq 0$, such that

$$-\pi_{\max} B_D(\lambda)(A - \lambda I)u = -ASu.$$
Let $S : D_{aF} \to D_{aF}$ be selfadjoint (with respect to the A-inner product), let $T = -AS : D_{aF} \to D_{F}$, and let

$$D_T = \{u + Tu : u \in D_{aF}\},$$

an element of $\mathfrak{A} : A$ with domain $\mathcal{D}_T = D_T + \mathcal{D}_{\text{min}}$ is selfadjoint.

For $\lambda \in \text{res}(A_D)$

$$\pi_{\text{max}}\mathcal{K}_\lambda = \{u - \pi_{\text{max}}B_{F}(\lambda)(A - \lambda I)u : u \in D_{aF}\}.$$

Note that $\pi_{\text{max}}B_{F}(\lambda)(A - \lambda I)u \in D_F$.

so, $D_T \cap \pi_{\text{max}}\mathcal{K}_\lambda \neq 0$ if and only if there is $u \in D_{aF}$, $u \neq 0$, such that $-\pi_{\text{max}}B_D(\lambda)(A - \lambda I)u = -ASu$. Setting

$$F_{D_F}(\lambda) = -A\pi_{\text{max}}B_{F}(\lambda)(A - \lambda I)|_{aF}, \quad \lambda \in \text{res}(A_{D_F})$$

an operator $D_{aF} \to D_{aF}$
Let \(S : D_{aF} \to D_{aF} \) be selfadjoint (with respect to the \(A \)-inner product), let \(T = -AS : D_{aF} \to D_{F} \), and let

\[
D_T = \{ u + Tu : u \in D_{aF} \},
\]

an element of \(\mathcal{A} : A \) with domain \(D_T = D_T + D_{\min} \) is selfadjoint.

For \(\lambda \in \text{res}(A_{DF}) \)

\[
\pi_{\max} \mathcal{K}_\lambda = \{ u - \pi_{\max} B_{F}(\lambda)(A - \lambda I)u : u \in D_{aF} \}.
\]

so, \(D_T \cap \pi_{\max} \mathcal{K}_\lambda \neq 0 \) if and only if there is \(u \in D_{aF}, u \neq 0 \), such that

\[
-\pi_{\max} B_{D}(\lambda)(A - \lambda I)u = -ASu.
\]

Setting

\[
F_{DF}(\lambda) = -A\pi_{\max} B_{F}(\lambda)(A - \lambda I)|_{aF}, \quad \lambda \in \text{res}(A_{DF})
\]

an operator \(D_{aF} \to D_{aF} \) we thus have

\[
\lambda \in \text{spec}(A_{DT}) \cap \text{res}(A_{DF}) \iff F_{D}(\lambda) - S \text{ has nontrivial kernel}.
\]
The map $F_{DF}(\lambda)$ satisfies

$$F_{DF}(\lambda)^* = F_{DF}(\bar{\lambda}), \quad \lambda \in \text{res}(A_{DF}).$$
The map $F_{DF}(\lambda)$ satisfies

$$F_{DF}(\lambda)^* = F_{DF}(\bar{\lambda}), \quad \lambda \in \text{res}(A_{DF}).$$

In addition, for any $\lambda \in \text{res}(A_D)$,

$$(F_{DF}(\lambda)u, u')_A = \sum_{k=0}^{\infty} \frac{\langle \delta u, \psi_k \rangle \langle \delta u', \psi_k \rangle}{1 + \lambda^2_k} \frac{1 + \lambda \lambda_k}{\lambda_k - \lambda}, \quad u, u' \in D_{aF}.$$
The map $F_{D_F}(\lambda)$ satisfies

$$F_{D_F}(\lambda)^* = F_{D_F}(\bar{\lambda}), \quad \lambda \in \text{res}(A_{D_F}).$$

In addition, for any $\lambda \in \text{res}(A_D)$,

$$(F_{D_F}(\lambda)u, u')_A = \sum_{k=0}^{\infty} \frac{\langle \delta_u, \psi_k \rangle \langle \delta_{u'}, \psi_k \rangle}{1 + \lambda_k^2} \frac{1 + \lambda \lambda_k}{\lambda_k - \lambda}, \quad u, u' \in D_{aF}.$$

Thus

$$Q_{D_F,\lambda}(u, u') = (F_{D_F}(\lambda)u, u')_A, \quad u, u' \in D_{aF}$$

is Hermitian when $\lambda \in \text{res}(A_{D_F}) \cap \mathbb{R}$.
The map $F_{DF}(\lambda)$ satisfies

$$F_{DF}(\lambda)^* = F_{DF}(\bar{\lambda}), \quad \lambda \in \text{res}(A_{DF}).$$

In addition, for any $\lambda \in \text{res}(A_D)$,

$$(F_{DF}(\lambda)u, u')_A = \sum_{k=0}^{\infty} \frac{\langle \delta u, \psi_k \rangle \langle \delta u', \psi_k \rangle}{1 + \lambda^2_k} \frac{1 + \lambda \lambda_k}{\lambda_k - \lambda}, \quad u, u' \in D_{aF}.$$

Thus

$$Q_{DF,\lambda}(u, u') = (F_{DF}(\lambda)u, u')_A, \quad u, u' \in D_{aF}$$

is Hermitian when $\lambda \in \text{res}(A_{DF}) \cap \mathbb{R}$. We have

$$\frac{\partial Q_{DF,\lambda}(u, u)}{\partial \lambda} = \sum_{k=0}^{\infty} \frac{|\langle \delta u, \psi_k \rangle|^2}{(\lambda_k - \lambda)^2}$$

so $\partial Q_{DF,\lambda}/\partial \lambda$ is positive definite when $\lambda \in \mathbb{R} \setminus \text{spec}(A_{DF})$.
Setting $\lambda_{-1} = -\infty$, it follows that if $Q_{D_F,\tilde{\lambda}}$ is positive indefinite (negative indefinite) for some $\tilde{\lambda} \in (\lambda_{k-1}, \lambda_k)$, $k = 0, 1, \ldots$, then $Q_{D_F,\lambda}$ is positive (negative) definite for $\lambda \in (\tilde{\lambda}, \lambda_k)$ ($\lambda \in (\lambda_{k-1}, \tilde{\lambda})$).

These observations, plus the fact that

$$Q_{D_F,\lambda}(u, u) \to -\infty \text{ as } \lambda \to -\infty \quad \text{for all } u \in D_{aF}, u \neq 0,$$

gives very precise information about the spectrum of A with domains $D + D_{\text{min}}$, $D \in \mathfrak{S}A$.