
THE KERNEL BUNDLE OF A HOLOMORPHIC FREDHOLM

FAMILY

THOMAS KRAINER AND GERARDO A. MENDOZA

Abstract. Let Y be a smooth connected manifold, Σ ⊂ C an open set and

(σ, y) → Py(σ) a family of unbounded Fredholm operators D ⊂ H1 → H2

of index 0 depending smoothly on (y, σ) ∈ Y × Σ and holomorphically on

σ. We show how to associate to P, under mild hypotheses, a smooth vector

bundle K → Y whose fiber over a given y ∈ Y consists of classes, modulo
holomorphic elements, of meromorphic elements φ with Pyφ holomorphic. As

applications we give two examples relevant in the general theory of boundary

value problems for elliptic wedge operators.

1. Introduction

It has long been recognized that, as with uniformly elliptic linear operators on
smooth bounded domains, also for other classes of linear elliptic operators A it is
the case that boundary conditions should be expressed as conditions on (some of)
the coefficients of the asymptotic expansion at the boundary of formal solutions of
Au = f . Such asymptotic expansions are proved to exist in many instances, for
example for elliptic b-operators or operators of Fuchs type (Kondrat′ev [7], Melrose
[12], Melrose and Mendoza [13, 14], Rempel and Schulze [15], Schulze [18], in an
analytic context Igari [6], etc.), where such expansions, well understood, form a
finite dimensional space (Lesch [10]). More generally, such expansions also exist
under some conditions for elliptic e-operators (Mazzeo [11], and in a somewhat
different context, Costabel and Dauge [2, 3] and Schmutzler [16, 17]). These classes,
which include regular elliptic differential operators, come up in certain geometric
problems on noncompact manifolds. Slightly modified, they are central in the
analysis of elliptic problems on compact manifolds with singularities (conical points,
edges, and corners, for instance).

Because of their importance and potential applicability there is great interest in
developing the tools to handle boundary value problems for these classes. To this
end we present here the definition of a smooth vector bundle whose sections are the
principal parts of the analogues of the traces (in the sense of boundary values) in
the case of classical problems. Boundary conditions are to be imposed as differential
or pseudodifferential conditions on these sections. We refer to the vector bundle as
the trace bundle. It depends, in general, on the differential operator itself.

To give some concrete context, consider first the case where A is a regular elliptic
linear differential operator of order m > 0 on a manifold with boundary. After
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localization and flattening of the boundary,

A =
∑

k+|α|≤m

ak,α(x, y)Dk
xD

α
y

in a neighborhood of 0 in R+ × Rn. The coefficients are smooth, the boundary is
x = 0 and the interior of the manifold contains the region x > 0. The operator
P = xmA is an example of an edge operator, and x−mP (so A itself) an example
of a wedge operator. The operator P is equal to∑

k+|α|≤m

ak,α(x, y)xm−k−|α|pk(xDx + i|α|)(xDy)α

where pk(σ) = (σ + i(k − 1))(σ + i(k − 2)) · · ·σ. The ansatz that a formal solution
of Pu = 0 is a formal series in (possibly complex) powers of x at x = 0 leads to the
conclusion that in fact u has a classical Taylor expansion,

u ∼
∞∑
k=0

uk(y)xk.

The primary reason for this can be seen through the same analysis as with ordinary
differential operators with regular singular points: the indicial equation for the
operator above is am,0(0, y)pm(σ) = 0, an equation whose roots are the elements of

I = {0,−i,−2i, . . . ,−i(m− 1)}.

These are the only roots because am,0(0, y) is invertible due to the assumed ellip-
ticity of A. The coefficients of xiσ with σ ∈ I in the formal Taylor expansion of a
solution of Au = 0 are the objects on which conditions are placed. The upshot of
this brief analysis is that if A acts on sections of a vector bundle E, then the trace
bundle of A is the direct sum of m copies of the restriction of E to the boundary;
this may be viewed simply as the kernel of xmDm

x . This leads to the trivial complex
vector bundle of rank m if A is a scalar operator.

This analysis generalizes, with a different conclusion, to elliptic wedge operators.
These are operators of the form A = x−mP where P is an edge operator,

P =
∑

k+|α|+|β|≤m

ak,α,β(x, y, z)(xDx)k(xDy)αDβ
z , (1.1)

(see [11]) where again ak,α,β is smooth and, in the simplest case, z ranges in a
compact manifold Z without boundary; Z is a point in the case of a regular elliptic
operator. Loosely speaking, the variable y lies in an open set in some Euclidean
space, more generally in a manifold Y, while x ≥ 0. The case Y = {pt.} models
conical singularities. Edge-ellipticity of P (e-ellipticity for short) is the property
that its edge symbol, ∑

k+|α|+|β|=m

ak,α,β(x, y, z)ξkηαζβ , (1.2)

is invertible if (ξ, η, ζ) 6= 0. In this case we also say that A = x−mP is wedge-elliptic,
or just w-elliptic. If P is e-elliptic, its indicial family,

Py(σ) =
∑

k+|α|≤m

ak,0,β(0, y, z)σkDβ
z ,
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is elliptic as a family of differential operators on Z (typically acting on sections of
a vector bundle). This family depends smoothly on (y, σ) and holomorphically on
σ ∈ C. For any given y the elements σ for which Py(σ) is not invertible forms a
closed discrete set specb(Py) ⊂ C called the boundary spectrum of A at y (see [12]);
by a well known trick, this set is the spectrum of an operator. Quite evidently,
specb(Py) typically depends on y. If Z is a manifold with boundary, then the
indicial family is accompanied by homogeneous boundary conditions coming from
the original setup—again making the b-spectrum discrete for each y. The possible
dependence on y may lead, because of variable multiplicity, to the effects referred
to in the literature as branching asymptotics, see for example [19], making the
analysis of boundary value problems for A = x−mP considerably more difficult in
comparison with the classical case.

It is this branching that we address here. What concerns us is the global defini-
tion of the trace bundle and its C∞ structure, for a general elliptic wedge operator:
in order to develop a general theory of boundary value problems for elliptic opera-
tors such as A, a global problem by its very nature (consider for instance the APS
boundary condition), one needs to be able to refer to traces as global objects.

The trace bundle is one of components in our program to develop a theory of
boundary value problems for elliptic wedge operators along the lines of the standard
theory of boundary value problems for regular elliptic operators. Other components
of the theory will appear elsewhere. In particular, a theory of elliptic operators of
variable order generalizing the Douglis-Nirenberg theory (whose relevancy in the
case of regular boundary value problems may be recalled by consulting its use in
[1]) appears in [8], while [9] is devoted to the theory of boundary value problems
for first order elliptic wedge operators.

The paper is organized as follows.
We collect in Section 2 all the assumptions underlying our construction of a

vector bundle, and definition of its C∞ structure, closely related to the trace bundle.
This vector bundle, which we call the kernel bundle, is defined as a set in Section 3;
Theorem 3.2, the central result of the paper, sums it all up including the smooth
structure. Our approach—defining the kernel bundle rather than a trace bundle
directly—allows for enough generality to treat at the same time trace bundles both
when Z closed and when ∂Z 6= ∅ (the latter case with some boundary condition).
Allowing for such generality opens the door to use an iterative approach to handle
the more complicated situations that arise in the presence of a stratification of the
boundary.

We construct the putative smooth frames in Section 4. An equivalent version of
these local frames was already defined by Schmutzler [16, 17] using Keldysh chains,
however, these papers do not address the regularity of the transition functions.

Our construction of the special frames lends itself to be readily used to show, in
Section 5, that two frames of the same kind are related by smooth transition func-
tions, in other words, that the kernel bundle has a smooth vector bundle structure,
see Theorem 5.1. This structure is natural in that the property that a section is
smooth can be checked intrinsically. The proof of Theorem 5.1 relies heavily on the
smoothness and nondegeneracy of a pairing between the kernel bundle (associated
to a family of operators) and that of its dual. This result is stated as Theorem 5.3;
its proof relies heavily on ideas used in [5]. Section 5 is at the heart of this work.
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The last two sections provide examples. In Section 6, the first of these two
sections, we consider the case of a general elliptic wedge operator x−mP , P ∈ Diffme ,
where the boundary fibration has compact fibers. In the second, Section 7, we
illustrate with a toy example (motivated by what would be codimension 1 cracks
in linear elasticity) the use of the kernel bundle when the fibers of the boundary
fibration (the Z) are nonclosed.

2. Set up

Let Y be a connected manifold and

℘1 : H1 → Y, ℘2 : H2 → Y
smooth Hilbert space bundles. Further let D → Y be another smooth Hilbert space
bundle continuously embedded in H1 with fiberwise dense image and such that the
trivializations of H1 (smooth and unitary) restrict to smooth trivializations of D .
We write H1, H2 and D for the model spaces.

Let Σ be an open connected subset of C. With π : Y × Σ → Y denoting the
canonical projection, let

P : π∗D ⊂ π∗H1 → π∗H2 (2.1)

be a smooth bundle homomorphism covering the identity consisting of fiberwise
closed Fredholm operators depending holomorphically on σ. Suppose further that
for each y ∈ Y there is σ ∈ Σ such that

Py(σ) : Dy ⊂H1,y →H2,y (2.2)

is invertible. Passing to trivializations over an open set U ⊂ Y, (2.1) becomes a
smooth family

Py(σ) : D ⊂ H1 → H2, (y, σ) ∈ U × Σ,

holomorphic in σ.
Since (2.2) is Fredholm for all σ ∈ Σ and invertible for some such σ,

singb(Py) = {σ ∈ Σ : Py(σ) is not invertible}
is a closed discrete subset of Σ and

singe(P) = {(y, σ) ∈ Y × Σ : σ ∈ singb(Py)}.
is a closed subset of Y×Σ. The notation is motivated by the corresponding objects
in the context of b- and e-operators, specb and spece (see [12], [11], also [4]). We
will assume the stronger condition that

singb(Py) is a finite set for each y ∈ Y and singe(P) is closed in Y ×C. (2.3)

The condition that singe(P) is closed in Y × Σ means that for every y0 ∈ Y there
is δ > 0 and a neighborhood U of y0 such that dist(singb(Py),C\Σ) > δ if y ∈ U .

Write Py(σ)∗ for the Hilbert space adjoint of (2.2). Assume that the domains
of the Py(σ)∗ join to give another smooth Hilbert space bundle D∗ continuously
embedded in H2 and such that the smooth unitary trivializations of H2 restrict
to trivializations of D∗. Defining P∗

y (σ) = Py(σ)∗ we obtain another smooth
homomorphism

P∗ : π∗D∗ ⊂H2 → π∗H1

depending holomorphically on σ, where now π is the projection Y ×Σ→ Y, which
satisfies the same Fredholm, analyticity, and invertibility properties as P.
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3. The kernel bundle

If K is a Hilbert space and V ⊂ C is open, we write M(V,K) for the space of
meromorphic K-valued functions on V and H(V,K) for the subspace of holomorphic
elements. Thus f ∈ M(V,K) if there is, for each σ0 ∈ V , a number µ0 ∈ N0 such
that σ 7→ (σ − σ0)µ0f(σ) is holomorphic near σ0. Suppose Ω b V is open and has
smooth (or rectifiable) boundary. If f ∈M(V,K) has finitely many poles in Ω and
no poles on ∂Ω, then the sum of the singular parts of f at each pole in Ω is given
by

sV (f)(σ) =
i

2π

∮
∂Ω

f(ζ)

ζ − σ
dζ, |σ| � 1

with the positive orientation for ∂Ω. Replacing Ω by a disjoint union of open discs
with small radii, each containing at most a single pole of f and contained in Ω we
see that the formula determines an element of M(C,K).

Let V be an open subset of Σ. Since σ 7→Py(σ) is holomorphic, it gives maps

Py : M(V,Dy)→M(V,H2,y), Py : H(V,Dy)→ H(V,H2,y)

so there is an induced map

[Py]V : M(V,Dy)/H(V,Dy)→M(V,H2,y)/H(V,H2,y). (3.1)

Any element [φ] ∈ ker[Py]V is represented uniquely by the sum of the singular
parts of any given representative φ at the various poles in V . Define

Ky = {sΣ(φ) : φ ∈M(Σ,Dy), Pyφ ∈ H(Σ,H2,y)}.

Thus Ky is canonically isomorphic to the kernel of [Py]Σ. It is a vector space over
C, finite-dimensional due to (2.3) and the various other hypotheses made on P. An
element of Ky is in particular a Dy-valued meromorphic function on C with poles
contained in singb(Py); and if the element is regular, then it is the zero function.

It is also convenient to define, if σ0 ∈ Σ

Ky,σ0 = {sD(φ) : φ ∈M(D,Dy) : Pyφ ∈ H(D,H2,y)}

where D is a disc in Σ centered at σ0 with

singb(Py) ∩D\{σ0} = ∅.

Thus

Ky =
⊕
σ0∈Σ

Ky,σ0
.

We are ready to state the central result of the paper:

Theorem 3.2. Define

K =
⊔
y∈Y

Ky, π : K → Y the canonical map,

and let B∞(Y; K ) be the space of right inverses of π which viewed as D-valued
functions on (Y × C)\ singe(P) by way of the trivializations of H1 are smooth in
the complement of singe(P) and holomorphic in σ. If (2.3) holds, then π : K → Y
has a smooth vector bundle structure with respect to which its space of C∞ sections
is B∞(Y; K ).
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We may replace Y by an open subset U ⊂ Y in all of the above, in which case we
naturally write, with only slight abuse of the notation, B∞(U ; K ). The following
definition is natural in view of the structure of K .

Definition 3.3. The vector bundle K → Y is the (meromorphic) kernel bundle
of P.

Since P(σ) commutes with multiplication by functions that depend only on y,
B∞(Y; K ) is certainly a module over C∞(Y).

The proof of Theorem 3.2 will occupy the next two sections. In the first of these,
Section 4, we will find for every y0 ∈ Y, a neighborhood U of y0 over which D , H1,
and H2 are trivial and elements

φsj,` ∈ B∞(U ; K ), s = 1, . . . , S, j = 1, . . . , Js, ` = 0, . . . , Ls,j − 1 (3.4)

giving a pointwise basis of Ky for each y ∈ U . Then we will show, in Section 5,
that for any φ ∈ B∞(U ; K ), the functions f j,`s such that

φ =
∑
s,j,`

f j,`s φsj,`,

which exist just because the φsj,`(y) constitute a basis of Ky for each y ∈ U , are
smooth. Consequently, declaring the φs,j,` to be a frame over U gives the desired
smooth vector bundle structure. The somewhat peculiar indexing of the compo-
nents of the frame reflects the nature of the problem, as will be clear as we develop
the proof.

4. Frames

Fix y0 ∈ Y. In the rest of this section we will work in a neighborhood of y0 over
which D , H1 and H2 are trivial. We write Py(σ) : D ⊂ H1 → H2 for the family
viewed on the trivialization and write singb(Py) in place of singb(Py) and singe(P)
for the part of singe(P) over the given neighborhood of y0. In this section we aim
at finding a neighborhood U of y0 and elements (3.4) giving a basis of Ky for each
y ∈ U .

Denote by σs, s = 1, . . . , Sy0 , the points in singb(Py0). Let Ks ⊂ D and Rs ⊂ H2

be, respectively, the kernel and image of Py0(σs). The latter space is a closed
subspace of H2. The spaces Ks and R⊥s are finite-dimensional subspaces of H1 and
H2, respectively, of the same dimension because Py0(σ) has index 0. Write Py(σ)
in the form [

p1
s,1 p1

s,2

p2
s,1 p2

s,2

]
:
Ks

⊕
K⊥s

→
R⊥s
⊕
Rs

; (4.1)

the pis,j are smooth in (y, σ) and holomorphic in σ. The space K⊥s is the subspace
of D orthogonal to Ks with respect to the inner product of H1. Likewise, the space
R⊥s is the orthogonal of Rs in H2. All entries except p2

s,2 vanish at (y0, σs), and

p2
s,2(y0, σs) is invertible.

There is ε > 0 such that

(1) the family of discs

Ds,2ε = {σ : |σ − σs| < 2ε}, s = 1, . . . , Sy0

is pairwise disjoint with each D(σs, 2ε) contained in Σ;
(2) for each s, p2

s,2(y0, σ) is invertible if σ ∈ Ds,2ε.
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By continuity, (2) implies there is a connected neighborhood U of y0 such that

(3) for each s, p2
s,2(y, σ) is invertible if (y, σ) ∈ U ×Ds,ε.

Define Ps(y, σ) : Ks → R⊥s for (y, σ) ∈ U ×Ds,ε by

Ps = p1
s,1 − p1

s,2(p2
s,2)−1p2

s,1. (4.2)

In view of (3), the invertibility of Py(σ) if σ ∈ Ds,ε is equivalent to that of Ps(y, σ).
In particular, by (1), Ps(y0, σ) is invertible if σ ∈ Ds,ε\{σs}.

The spaces Ks and R⊥s have the same dimension so, after fixing a basis for each
of these spaces, it makes sense to talk about the determinant of a map Ks → R⊥s .
Let then qs = detPs be computed with respect to some such pair of bases. This is
a smooth function on U ×Dσs,ε, holomorphic in σ ∈ Ds,ε and qs(y0, σ) is nonzero
on Ds,ε\{σs} by (1). Note that

singb(Py) ∩Ds,ε = {σ ∈ Ds,ε : qs(y, σ) = 0}.
Shrinking U further we may thus also assume that

(4) for each s, qs is nowhere zero in U × {σ : ε/2 ≤ |σ− σs| < ε}, equivalently,

y ∈ U =⇒ singb(Py) ⊂
Sy0⋃
s=1

Ds,ε/2.

It follows from (4) that the number of zeros, counting multiplicity, of the function

Ds,ε 3 σ 7→ qs(y, σ) ∈ C
is independent of y ∈ U ; we assume throughout that U is connected. Letting
ds be that number, we have in particular that the function qs(y0, σ) factors as
(σ − σs)dshs(σ) where hs, defined in Ds,ε, is holomorphic and vanishes nowhere in
its domain.

For each y ∈ U let

Ks,y = {sDs,ε(φ) : φ ∈M(Ds,ε,Ks), Ps(y, ·)φ ∈ H(Ds,ε, R
⊥
s )}.

This space is canonically isomorphic to the kernel of the operator

M(Ds,ε,Ks)/H(Ds,ε,Ks)→M(Ds,ε, R
⊥
s )/H(Ds,ε, R

⊥
s ) (4.3)

induced by Ps(y, ·). The elements of Ks,y are Ks-valued meromorphic functions on
C with poles in Ds,ε/2∩ singb(Py). Indeed, Ps(y, σ)−1 is meromorphic in Ds,ε with
poles in Ds,ε/2 ∩ singb(Py).

By [5, Lemmas 5.2 and 5.5] there are elements φKsj,0 (y0, σ) ∈ Ks,y0 , j = 1, . . . , Js,
with pole only at σs of some order Ls,j such that

(a) the elements

φKsj,` (y0, σ) = sDs,ε
(
(σ − σs)`φKsj,0 (y0, σ)

)
, j = 1, . . . , Js, ` = 0, . . . , Ls,j − 1 (4.4)

form a basis of Ks,y0 ,

(b) the values of the (σ − σs)Ls,jφKsj,0 (y0, σ) at σs form a basis of Ks,

(c) the R⊥s -valued functions

βs,j(σ) = Ps(y0, σ)(φKsj,0 (y0, σ)) (4.5)

are holomorphic in Ds,ε and their values at σs form a basis of R⊥s .

Define

φKsj,` = sDs,ε
(
(σ − σs)`Ps(y, σ)−1

(
βs,j(σ)

))
, ` = 0, . . . , Ls,j − 1, j = 1, . . . , Js.
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Remark 4.6. Condition (4) above implies that the elements φKsj,` (y, σ) are holo-
morphic in the complement of

(U ×Ds,ε/2) ∩ singe(A)

in U × C.

Lemma 4.7. There is a neighborhood U ′ ⊂ U of y0 such that for each y′ ∈ U ′ the
restrictions to {y = y′} of the functions φKsj,` give a basis of Ks,y′ .

Proof. We first argue that dimKs,y = ds for all y ∈ U . By [5, Lemma 5.5] the
dimension of Ks,y0 is ds =

∑
j Ls,j . This is also the number of zeros of qs(y0, ·) in

Ds,ε counting multiplicity (i.e., the order of vanishing of qs(y0, ·) at σs, its single

zero). To see this, note that the elements (σ − σs)LjφKsj,0 (y0, σ) are holomorphic
at σ = σs and that their values there, therefore also nearby, form a basis of Ks.
We noted that the βs,j(σ) in (4.5) give a basis of R⊥s when σ = σs, hence also for
σ near σs. With respect to these bases, the matrix of Ps(y0, σ) is diagonal with

entries (σ − σs)L
j

, therefore detPs(y0, σ) =
∏
j(σ − σs)Lj modulo a nonvanishing

factor. If y ∈ U is arbitrary and σ′ ∈ Ds,ε ∩ singb(Py), then the same argument
gives that

dim{φ ∈ Ks,y : pole(φ) = {σ′}}
is equal to the order of vanishing of qs(y, ·) at σ′. Since Ks,y is the direct sum
of these spaces, the dimension of Ks,y is the number of zeros, ds again, of qs(y, ·)
counting multiplicity. Thus dimKs,y = ds.

We now show that there is a neighborhood U ′ of y0 in U such that the ds
functions φKsj,` (y, ·) are linearly independent for every y ∈ U ′. If not, there is a

sequence {yk}∞k=1 ⊂ U converging to y0 and for each k, numbers aj,`k not all zero,
such that ∑

j,`

aj,`k φKsj,` (yk, ·) = 0.

We may assume
∑
j,k |a

j,`
k |2 = 1 and then, passing to a subsequence, that the

sequence {aj,`k }∞k=1 converges, say limk→∞ aj,`k = aj,`. The functions φKsj,` are in

particular defined and continuous when ε/2 < |σ − σs| < ε, so

0 = lim
k→∞

∑
j,`

aj,`k φKsj,` (yk, ·) =
∑
j,`

aj,`φKsj,` (y0, ·)

if |σ− σs| > ε/2 (see Remark 4.6). Since the φKsj,` (y0, σ) are meromorphic in C, the
equality holds everywhere. Since not all aj,` are zero, we reach the conclusion that
the elements (4.4) are linearly dependent, a contradiction. Thus it must be that

the φKsj,` (y, ·) are linearly independent for y near y0. This completes the proof of
the lemma. �

Replacing U by U ′ allows us to assume:

(5) the elements φKsj,` form a basis of Ks,y for each y ∈ U and s = 1, . . . , S.

Suppose now that φ ∈ B∞(U ; K ). Passing to trivializations, there is a smooth
function

u : (U × Σ)\ singe(P)→ D
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such that vy = Pyuy is holomorphic in Σ for each y ∈ U and

φ = sΣ(u)

The function uy is meromorphic in Σ with poles in singb(Py). We will omit y and σ
from the notation in the following few lines. Decomposing u pointwise over U×Ds,ε

as

u = uKs + uK
⊥
s

according to Ks ⊕K⊥s = D, similarly

v = vR
⊥
s + vRs ,

we obtain using (4.1) that

uKs = P−1
s (vR

⊥
s − p1

s,2(p2
s,2)−1vRs), uK

⊥
s = (p2

s,2)−1(vR
⊥
s − p2

s,1u
Ks).

Since (p2
s,2)−1(vR

⊥
s ) is smooth on U ×Ds,ε and holomorphic in the second variable,

u ≡ uKs − (p2
s,2)−1p2

s,1u
Ks

modulo a smooth function on U × Ds,ε depending holomorphically on σ. Since
sDs,εu

Ks is an element of Ks,y for each y ∈ U , Lemma 4.7 (i.e. Condition (5)) gives,

for each such y, unique numbers f j,`s (y) such that

sDs,ε(u
Ks) =

∑
j,`

f j,`s φKsj,` ,

that is,

uKs −
∑
j,`

f j,`s φKsj,`

is holomorphic in σ for each y ∈ U when σ ∈ Ds,ε. So the same is true of

u−
(∑
j,`

f j,`s φKsj,` − (p2
s,2)−1p2

s,1

∑
j,`

f j,`s φKsj,`
)
,

hence passing to singular parts and adding we also have, with

φ =
∑
s,j,`

f j,`s
(
φKsj,` − sDs,ε(p

2
s,2)−1p2

s,1φ
Ks
j,`

)
, (4.8)

that uy − φy is holomorphic in
⋃
sDs,ε for each y ∈ U and s = 1, . . . , S. Using

that, as a consequence of (2.3), specb(Py) ⊂
⋃
sDs,ε, we conclude that uy − φy is

holomorphic in Σ. It follows that the elements

φsj,` = φKsj,` − sDs,ε
(
(p2
s,2)−1p2

s,1φ
Ks
j,`

)
(4.9)

with s = 1, . . . , S, j = 1, . . . , Js, ` = 0, . . . , Ls,j − 1, form a basis of Ky for each
y ∈ U . By means of the trivialization of H1 over U we view φsj,` as an element of

B∞(U ; K ) with singularities within U ×Ds,ε/2.
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5. Smoothness of transition functions

The proof of the following theorem will complete our proof of Theorem 3.2.

Theorem 5.1. The φsj,` in (4.9) are elements of B∞(U ; K ) giving a basis of Ky

for each y ∈ U . If φ ∈ B∞(U ; K ) then

φ =
∑
s,j,`

f j,`s φsj,` for y ∈ U (5.2)

with smooth functions f j,`s : U → C.

Proof. We have already seen that, as a consequence of Condition (5) in the previous
section and (4.8), if φ ∈ B∞(U ; K ) then there are unique functions f j,`s : U → C
such that (5.2) holds. The task now is to show that the f j,`s are smooth.

Define K ∗ to be the meromorphic kernel bundle of P∗; this will not necessarily
be the dual bundle of K but the notation is convenient. The following theorem is
the key result.

Theorem 5.3. Let Ω b Σ be open with smooth positively oriented boundary and
singb(Py) ⊂ Ω. The sesquilinear pairing

Ky ×K ∗
y → C,

[φ, ψ][y =
1

2π

∮
∂Ω

(
φ(σ),P?

y (σ)ψ(σ)
)
H1,y

dσ
(5.4)

is nondegenerate.

The theorem is proved below. Assuming its validity, we proceed as follows.
Reverting to trivializations, write P∗(σ) (with σ ∈ Σ) for the local version of P∗(σ)
over U . Possibly after shrinking U about y0 we can carry out the constructions we
did for P(σ) in obtaining the elements φsj,` to obtain elements

ψj,`s ∈ B∞(U ; K ∗)

giving a pointwise basis of K ∗ over U . In doing this we note that singb(P
∗
y ) is

the conjugate set, singb(Py), of singb(Py) and take advantage notationally of the
fact that by [5, Lemma 6.2] we can use the same indices s, j, ` as for the φsj,`. We

also arrange that the singularities of ψj,`s lie within U ×Ds,ε/2, the “conjugate” of
U ×Ds,ε/2.

If φ ∈ B∞(U,K ) and ψ ∈ B∞(U,K ∗), then

U 3 y 7→ [φ(y), ψ(y)][y =
1

2π

∑
s

∮
∂Ds,ε

(
φ(y, σ),P?y (σ)ψ(y, σ)

)
H1
dσ ∈ C

is smooth, simply because the integrand is smooth in the complement in U × Σ of
singe(P) ∩ (U × Σ). Consequently, the functions defined by

as,j
′,`′

s′,j,` (y) = [φsj,`(y), ψj
′,`′

s′ (y)][y

are smooth, as are the functions

bj
′,`′

s′ (y) = [φ(y), ψj
′,`′

s′ (y)][y.

Since the φsj,`(y) and ψj
′,`′

s′ (y) form bases of, respectively Ky and K ∗
y , the nondegen-

eracy of (5.4) implies that the matrix a = [as,j
′,`′

s′,j,` ] is nonsingular. If φ ∈ B∞(U ; K )
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then (5.2) gives

bj
′,`′

s′ = [φ, ψj
′,`′

s′ ][ =
∑
s,j,`

f j,`s [φsj,`, ψ
j′,`′

s′ ][ =
∑
s,j,`

f j,`s as,j
′,`′

s′,j,` .

Since a is nonsingular and its entries and those of b = [bj
′,`′

s′ ] are smooth, so are the
f j,`s . This completes the proof of Theorem 5.1. �

Proof of Theorem 5.3. The assertion is a pointwise statement, so we may assume
y = y0 throughout the proof to take advantage of the notation introduced so far;
we also work with the trivializations near y0 of the various Hilbert space bundles.
The proof we give here collects arguments spread throughout Sections 5, 6, and 7
of [5], used there to prove an analogous statement. Our notation here is slightly
different from the one used there.

If φ ∈ Ky0 , then φ =
∑
s φ

s with φs = sDs,εφ. The element φs has a pole only
at σs and is of the form

φs = φKs − sDs,ε
(
(p2
s,2)−1p2

s,1φ
Ks
)

with a unique φKs ∈ Ks,y0 , that is,

sDs,εPsφ
Ks = 0 and sDs,εφ

Ks = φKs .

For each σs ∈ singb(Py0), the operator P∗y0(σ) = Py0(σ)∗ decomposes near σs in
the same fashion as Py(σ) in (4.1), namely[

q1
s,1 q1

s,2

q2
s,1 q2

s,2

]
:

R⊥s
⊕

Rs ∩ D∗
→

Ks

⊕
K̇⊥s

where K̇⊥s is the subspace of H1 orthogonal to Ks (so K⊥s = K̇⊥s ∩ D). Let

Qs = q1
s,1 − q1

s,2(q2
s,2)−1q2

s,1 (5.5)

and note in passing that Qs(σ)∗ = Ps(σ). An arbitrary element of K ∗
y0 decomposes

as ψ =
∑
ψs where ψs = sDs,εψ has pole only at σs and has the form

ψs = ψR⊥s − sDs,ε(q
2
s,2)−1q2

s,1ψR⊥s ,

again with a unique

ψR⊥s ∈ K∗s,y0 = {sDs,ε(ψ) : ψ ∈M(Ds,ε, R
⊥
s ), Qs(y0, ·)ψ ∈ H(Ds,ε,Ks)}.

We will first show that with φ ∈ Ky0 and ψ ∈ K ∗
y0 decomposed as indicated,

[φ, ψ][y =
1

2π

∑
s

∮
γs

(
φKs(σ),Qs(σ)ψR⊥s (σ)

)
H1
dσ (5.6)

where γs = ∂Ds,ε with counterclockwise orientation.
The integrand in (5.4) at y0 is meromorphic in Σ with poles at the various σs,

so equal, after trivializations, to

1

2π

∑
s

∮
γs

(
φs(σ),P?y0(σ)ψ(σ)

)
H1
dσ.
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We have∮
γs

(φs(σ),P?y0(σ)ψ(σ))H1
dσ

=

∮
γs

(
φKs(σ)− (p2

s,2)−1p2
s,1φ

Ks(σ),P?y0(σ)ψ(σ)
)
H1
dσ (5.7)

because the difference of the integrands in the left and the right hand sides is
holomorphic near Ds,ε. The right hand side of this identity is in turn equal to∮

γs

(
Py0(σ)

(
φKs(σ)− (p2

s,2)−1p2
s,1φ

Ks(σ)
)
, ψ(σ)

)
H2
dσ

=

∮
γs

(
Py0(σ)

(
φKs(σ)− (p2

s,2)−1p2
s,1φ

Ks(σ)
)
, ψs(σ)

)
H2
dσ.

The argument justifying the equality in (5.7) now gives that the last integral is
equal to∮

γs

(
Py0(σ)

(
φKs(σ)− (p2

s,2)−1p2
s,1φ

Ks(σ)
)
, ψR⊥s (σ)− (q2

s,2)−1q2
s,1ψR⊥s (σ)

)
H2
dσ.

Consequently,∮
γs

(
φ(σ),P?y0(σ)ψ(σ)

)
H1
dσ

=

∮
γs

(
φKs(σ)−(p2

s,2)−1p2
s,1φ

Ks(σ),P?y0(σ)(ψR⊥s (σ)−(q2
s,2)−1q2

s,1ψR⊥s (σ))
)
H1
dσ.

In view of (5.5),

P?y0(ψR⊥s − (q2
s,2)−1q2

s,1ψR⊥s ) = [q1
s,1ψR⊥s − q1

s,2(q2
s,2)−1q2

s,1ψR⊥s ]

+ [q2
s,1ψR⊥s − q2

s,2(q2
s,2)−1q2

s,1ψR⊥s ]

= QsψR⊥s ,

hence ∮
γs

(
φ(σ),P?y0(σ)ψ(σ)

)
H1
dσ =

∑
s

∮
γs

(
φKs(σ),Qs(σ)ψR⊥s (σ)

)
H1
dσ

which gives (5.6). Note that∮
γs

(
φ(σ),Qs(σ)ψ(σ)

)
H1
dσ =

∮
γs

(
Ps(σ)φKs(σ), ψR⊥s (σ)

)
H2
dσ.

We now show that for each s, the pairing

Ks,y0 × K∗s,y0 → C,

[φKs , ψR⊥s ][s,y0 =
1

2π

∮
γs

(
φKs(σ),Qs(σ)ψR⊥s (σ)

)
H1
dσ

is nondegenerate; this is Theorem 6.4 in [5]. By Lemma 6.2 of that paper, there

are ψj,0
R⊥s

(y0, σ) meromorphic in C with pole only at σs, of order Ls,j , such that

(a′) ψj,`
R⊥s

(y0, σ) = sDs,ε
(
(σ − σs)`ψj,0R⊥s (y0, σ)

)
, j = 1, . . . , Js, ` = 0, . . . , Ls,j − 1

is a basis of K∗s,y0 ,

(b′) the values of the (σ − σs)Ls,jψj,0R⊥s (y0, σ) at σs from a basis of R⊥s ,
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(c′) the values of

αs,j(σ) = Qs(y0, σ)ψj,0
R⊥s

(y0, σ) (5.8)

at σs form a basis of Ks, and
(d′) each of the functions

σ 7→
(
(σ − σs)Ls,j′φKsj,0 (y0, σ),Qs(y0, σ)ψj

′,0
R⊥s

(σ)
)
H1
, j, j′ = 1, . . . , Js

is holomorphic in a neighborhood of the closure of Ds,ε with value δjj′ at
σ = σs.

Properties (a′)–(c′) are the analogues for Qs of the properties of the φKsj,` . The
fourth property links the two bases in a convenient manner.

Suppose

φKs =
∑

f j,`φKsj,` , ψR⊥s =
∑

gj,`ψ
j,`
R⊥s
.

Then

[φKs , ψR⊥s ][s,y0 =
1

2π

∑
j,`,j′,`′

f j,`gj′`′

∮
γs

(
φKsj,` (σ),Qs(σ)ψj

′,`′

R⊥s
(σ)
)
H1
dσ

The difference(
φKsj,` (σ),Qs(σ)ψj

′,`′

R⊥s
(σ)
)
H1
−
(
(σ − σ0)`φKsj,0 ,Qs(σ)((σ − σ0)`

′
ψj
′,0
R⊥s

(σ))
)
H1

is holomorphic in a neighborhood of Ds,ε, so

2π[φKs , ψR⊥s ][s,y0

=
∑

j,`,j′,`′

f j,`gj′`′

∮
γs

(σ − σ0)`+`
′(
φKsj,0 (σ),Qs(σ)(ψj

′,0
R⊥s

(σ))
)
H1
dσ

=
∑

j,`,j′,`′

f j,`gj′`′

∮
γs

(σ − σ0)`+`
′−Ls,j

(
(σ − σ0)Ls,jφKsj,0 (σ),Qs(σ)(ψj

′,0
R⊥s

(σ))
)
H1
dσ

By virtue of (d′) the last integral vanishes unless j = j′ and `+`′ = Lj−1 in which
case the value is 2πi. Thus we arrive at

[φKs , ψR⊥s ][s,y0 = i

Js∑
j=1

Lj−1∑
`=0

f j,`gj,Lj−`−1.

It follows immediately that the condition [φKs , ψR⊥s ][s,y0 = 0 for all ψR
⊥
s ∈ Ks,y0

implies φKs = 0. This completes the proof of Theorem 5.3. �

6. The trace bundle of a wedge operator

LetM be a manifold whose boundary N = ∂M fibers over a connected manifold
Y with typical fiber Z, assumed to be compact:

Z ↪→ Ny℘

Y

(6.1)

Let E, F → M be vector bundles. Recall that a wedge differential operator on
M is an operator A ∈ x−m Diffme (M;E,F ) where Diffme (M;E,F ) is the class of
edge-differential operators with boundary structure associated to (6.1) defined by
Mazzeo [11]; here and throughout the rest of this section, x denotes a defining
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function of N which is positive in
◦
M. The notion of w-ellipticity of A, invariantly

defined in [4, Section 2], is equivalent to ellipticity of xmA in the sense of Mazzeo
(op. cit., p. 1620); in coordinates it means that if A is of the form x−mP with P
given by (1.1), then (1.2) is invertible for (ξ, η, ζ) 6= 0. Examples of these operators
include regular elliptic operators on a manifold with boundary (where Z reduces
to a point) and elliptic cone operators, where Y is discrete. We will assume in this
section that A is w-elliptic.

Let π : N∧ → N be the closure of the inward pointing normal bundle of N , an
R+ bundle, E∧ = π∗E, likewise F∧, let Zy = ℘−1(y), Z∧y = π−1Zy, EZy = E|Zy ,
similarly E∧Z∧y .

The normal family of A ∈ x−m Diffme (M;E,F ), see [4, Definition 2.13], is an
invariantly defined family of cone operators

T ∗Y 3 ηηη 7→ A∧(ηηη) ∈ x−m Diffmb (Z∧y ;E∧Zy , F
∧
Zy ).

This family along the zero section of T ∗Y gives a family y 7→ bAy of cone-differential
operators.

Fix γ ∈ R and let Ty denote the set of sections of E∧Zy which are finite sums of

the form

u =
∑

σ∈specb(
bPy)

γ−m<=σ<γ

Lσ∑
`=0

aσ,`x
iσ
∧ log` x∧ (6.2)

that satisfy bAyu = 0. Here bPy = xm bAy, an elliptic b-operator for each y ∈ Y.
The function x∧ : N∧ → R is smooth and linear in the fibers, positive off the zero
section (take x∧ = dx for instance) and the aσ,` are smooth sections of E along
Zy = ℘−1(y). Let

T =
⊔
y∈Y

Ty

and let πY : T → Y be the canonical map.
Define

spece(A) = {(y, σ) ∈ Y × C : σ ∈ specb(
bPy)}.

Theorem 6.3. Suppose that A ∈ x−m Diffme (M;E,F ) is w-elliptic and

spece(A) ∩
(
Y × {σ ∈ C : =σ = γ, γ −m}

)
= ∅. (6.4)

Then πY : T → Y is a smooth vector bundle over Y, the trace vector bundle of
A. The C∞ sections of T are the sections pointwise of the form (6.2) which are
smooth as sections of E∧ over

◦
N∧.

This is an application of Theorem 3.2. Let Py be the indicial family of bPy,
namely Py(σ) is the restriction of x−iσPyx

iσ to the space of distributional sections
of E along Zy. Let H1,y = L2(Zy;EZy ), H2,y = L2(Zy;FZy ), and Dy is the Sobolev
space Hm(Zy;EZy ). These are the fibers of Hilbert space bundles H1, H2 → Y, see
[4, Section 3] and a set-theoretical subbundle D ⊂H1. Because the trivializations
of H1 and H2 are constructed using diffeomorphisms trivializing N → Y, D is a
bundle with fiber Hm(Z, EZ) where EZ is bundle-isomorphic to the restriction of
E to some fiber of ℘ : N → Y. The properties required in Section 2 hold here for
P on Y × Σ, where

Σ = {σ ∈ C : γ −m < =σ < γ}.
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Since singb(Py) = specb(
bPy) ∩ Σ,

spece(A) ∩
(
Y × Σ

)
= singe(P).

The hypothesis (6.4) and the ellipticity of A imply that (2.3) holds, so we have a
well defined smooth vector bundle associated with P.

We now define a bundle isomorphism K → T . Given y ∈ Y and φ ∈ Ky let

Sy(φ) =
1

2π

∮
Γ

xiσ∧ φ(σ) dσ.

Here Γ is a simple closed smooth curve enclosing singb(Py) ∩ Σ and the integral
is computed with the counterclockwise orientation. Then Sy(φ) has the form (6.2)
and since

bPySy(φ) =
1

2π

∮
Γ

xiσPy(σ)φ(σ) dσ

vanishes because the integrand is entire, Sy(φ) ∈ Ty. If u ∈ Ty and ω is a cut-off
function equal to 1 near x∧ = 0, then the singular part of the Mellin transform of
ωu,

sC

∫ ∞
0

x−iσ∧ ω(x∧)u(x∧)
dx∧
x∧

,

is an element of Ky such that Sy(φ) = u. So S is a fiberwise isomorphism which
we may use to give T the structure of a C∞ vector bundle. It is easy to see that
S maps B∞(Y; K ) into elements pointwise of the form (6.2) that are smooth as
sections of E∧ over

◦
N∧, so the smooth structure of T induced by that of K is the

same as one would obtain from declaring as smooth the aforementioned sections.

7. Example

The following example is a toy model of the situation that arises in the analysis
of a boundary value problem for a symmetric second order elliptic operator near
the boundary, Y, (codimension 2) of a codimension 1 smooth submanifold C of the
ambient manifold, with Dirichlet condition along C.

Let Y be a compact connected manifold and let E → Y be a Hermitian complex
vector bundle. Further, let a ∈ C∞(Y; End(E)) be a self-adjoint section. Let
℘ : H → Y be the Hilbert space bundle whose fiber over y ∈ Y is the space of
Ey-valued L2 functions on [0, π]:

Hy = L2([0, π];Ey),

defined using the Lebesgue measure on [0, π] and the Hermitian product on Ey.
The unitary trivializations of H → Y are obtained from those of E → Y. Let

Dy = {φ ∈ L2([0, π];Ey) : φ ∈ H2([0, π];Ey), φ(0) = φ(π) = 0}.
Here H2([0, π];Ey) is the Sobolev space of order 2. Define

D =
⊔
y∈Y

Dy,

a set-theoretical subbundle of H .
Define

P(σ) : D ⊂H →H

as

Py(σ) = D2
s + a+ σ2.
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Thus Py(σ) is closed, densely defined and Fredholm of index zero. The graph
norms of the Py(σ) are all equivalent to each other. Further, the adjoint family
P∗ has the same properties. So the results of the Sections 4 and 5 are applicable
relative to open sets Σ ⊂ C satisfying (2.3).

To see that such open sets exist we describe singb(Py) explicitly in terms of the
eigenvalues of a(y). Decomposing Ey as a direct sum of eigenspaces of a(y) the
problem becomes a family of scalar problems

(D2
s + µj + σ2)φ = 0, j = 1, . . . , Jy

where the µj are the eigenvalues of a(y). This equation has a nonzero solution with
φ(0) = φ(π) = 0 if and only if −µj − σ2 = k2 with k ∈ N. Thus

singb(Py) = {±i
√
µ+ k2 : µ ∈ spec(a(y)), k ∈ N}.

Since Y is compact, the norm of a is bounded, say tr(a∗a) < r2. Then the
eigenvalues of a(y) lie in the interval (−r, r) and consequently, the numbers µ+ k2,
µ ∈ spec(a(y)), lie in the interval Ik = (k2−r, k2 +r). This interval and the interval
Ik+1 are disjoint if and only if k > (2r − 1)/2. This condition on k ∈ N ensures
that no point of singe(P) belongs to the set Y × ∂Σ where

Σ = {σ ∈ C : |=σ| <
√
k2 + k + 1/2}

since k2 + k + 1/2 is the midpoint between k2 + r and (k + 1)2 − r.
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