1. Let A and X be sets, \mathcal{F} the collection of all functions from subsets of A to X. Define a partial order on \mathcal{F} as follows: if $f : B \to X$, $f' : B' \to X$, then $f \preceq f'$ iff $B \subset B'$ and $f'|_B = f$. Let \mathcal{C} be a totally ordered subset of \mathcal{F}. Show that \mathcal{C} has an upper bound in \mathcal{F}: there is $g \in \mathcal{F}$ such that $f \preceq g$ for all $f \in \mathcal{F}$. (Here g need not belong to \mathcal{C}.)

2. Let X be a topological space, suppose is the union of a family of compact spaces $\{X_\alpha\}_{\alpha \in A}$: $X = \bigcup_{\alpha \in A} X_\alpha$. Let \mathcal{F} be the collection of all maps $A \to X$ such that $f(\alpha) \in X_\alpha$. Let $\mathcal{N} = \{f_d\}_{d \in D}$ be a net in \mathcal{F}. Show that there is $f \in \mathcal{F}$ and a subnet $\mathcal{N}' = \{f_{d'}\}_{d' \in D'}$ of \mathcal{N} such that for each α, the net $\{f_{d'}(\alpha)\}_{d' \in D'}$ converges to $f(\alpha)$. Hint: Analyze the proof of Tychonoff’s theorem.