1. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined by $f(x, y, z) = y^2 + z^2 - \left(1 + \frac{1}{4}\cos(\pi x)\right)^2$, let $S = \{(x, y, z) : f(x, y, z) = 0\}$. The gradient of f is nonzero at every point of S, so S is a surface. Verify that the curves defined by

\begin{align*}
\gamma(t) &= (0, 5/4 \cos(t), 5/4 \sin(t)), \\
\gamma(t) &= (1, 3/4 \cos(t), 3/4 \sin(t))
\end{align*}

are geodesics of S.

2. Let $r : \mathbb{R} \to \mathbb{R}$ be a smooth positive function, let S be the surface of revolution obtained by rotating the curve $(x, r(x), 0)$ around the x-axis. For $x_0 \in \mathbb{R}$ let

\[\gamma(t) = (x_0, r(x_0) \cos(t), r(x_0) \sin(t))\]

Verify that γ is a curve in S, then that it is a geodesic if and only if x_0 happens to be a critical point of r.