1. Let \(\{ A_i \} \) be a family of connected subsets of a topological space \(X \), such that \(A_i \cap A_j \neq \emptyset \) for all \(i, j \). Show that \(\bigcup_i A_i \) is connected.

2. Let \(A \subset X \) be a connected set, and suppose that \(A \subset Y \subset \overline{A} \). Prove that \(Y \) is connected.

3. Is a product of path-connected spaces necessarily path-connected?

4. Let \(X = \mathbb{R}^N \) be the set of all sequences of real numbers. Thus a point of \(X \) has the form \(x = (x_1, x_2, x_3, \ldots) \). Define a metric \(D \) on \(X \) by

\[
D(x, y) = \begin{cases}
1, & \text{if } |x_n - y_n| \geq 1 \text{ for some } n \in \mathbb{N}, \\
\sup \{|x_n - y_n| : n \in \mathbb{N}\}, & \text{otherwise.}
\end{cases}
\]

Prove that \(x \) and \(y \) lie in the same path component of \(\mathbb{R}^N \) if and only if the sequence

\[
x - y = (x_1 - y_1, x_2 - y_2, \ldots)
\]

is bounded.

5. For each of the following spaces, find an atlas of finitely many charts to \(\mathbb{R}^n \) (with the appropriate \(n \)).
 a) The circle \(S^1 \).
 b) The torus \(T^2 = S^1 \times S^1 \).
 c) The projective plane \(\mathbb{RP}^2 \), obtained as the quotient of \(S^2 \) with antipodal points identified.
 d) The 3–torus \(T^3 = S^1 \times S^1 \times S^1 \).

6. Extra credit. Let \(X \) be the set of all lines in \(\mathbb{R}^2 \), with the topology (or the metric) coming from the charts that we discussed in class. Let \(Y \subset X \) be the set of all lines whose Euclidean distance to the origin is at most 1. Prove that \(Y \) is homeomorphic to a Möbius strip.

 Hint: the correspondence between lines and polar coordinates for points is key here.