1. Let \(S \) be a compact surface in \(\mathbb{R}^3 \), and let \(p \in S \) be the point of \(S \) that is furthest from the origin. Prove that the Gaussian curvature at \(p \) is positive.

2. Let \(S \) be a compact surface in \(\mathbb{R}^3 \), and suppose that its Euler characteristic is \(\chi(S) \leq 0 \). Prove that there must be points on \(S \) where the Gaussian curvature is positive, zero, and negative.

3. Let \(\gamma(t) \) be a simple closed curve in the \(x - z \) plane, whose \(x \)-coordinate is always positive. Let \(S \) be the surface of revolution obtained by rotating \(\gamma \) about the \(z \)-axis.

 (a) Compute the Euler characteristic of \(S \).

 (b) What standard surface is \(S \) homeomorphic to?

4. Let \(S \) be a surface homeomorphic to a sphere, such that the Gaussian curvature of \(S \) is everywhere positive. Let \(\gamma_1 \) and \(\gamma_2 \) be simple closed geodesics on \(S \), such that the interior of \(\gamma_1 \) is region \(R_1 \) and the interior of \(\gamma_2 \) is region \(R_2 \). Prove that regions \(R_1 \) and \(R_2 \) must intersect.

 \textit{Hint:} if they do not intersect, think about what’s left of \(S \) after removing both \(R_1 \) and \(R_2 \).