Midterm Exam 2
Math 320-02, Fall 2006

You have 50 minutes. No notes, no books, no calculators. Good luck!

Name:

ID #:

1. _________ (/20 points)

2. _________ (/30 points)

3. _________ (/25 points)

4. _________ (/25 points)

Total _________ (/100 points)

Homework Average _________

Course Average _________
1. [20 points] State the definitions of the following terms or expressions.

(a) limit point of a set

Let $A \subset \mathbb{R}$, $\alpha \in \mathbb{R}$. Then α is a limit point of A if for all $\varepsilon > 0$, the neighborhood $U_{\varepsilon}(\alpha)$ intersects A in a point other than α.

(b) compact set

A set K is compact if every sequence contained in K has a convergent subsequence that converges to a limit in K.

(c) $\lim_{x \to c^+} f(x) = L$

$\forall \varepsilon > 0, \exists \delta > 0$ s.t. if $0 < x - c < \delta$, then $|f(x) - L| < \varepsilon$.

(d) $f(x)$ is uniformly continuous

$f(x)$ is uniformly continuous on A if $\forall \varepsilon > 0, \exists \delta > 0$ s.t. for all $x, y \in A$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$.
2. [30 points] True/False/Explain. State whether each of the following statements is true or false. Then explain your answer, in one or two sentences. Provide a counterexample where it's relevant. This problem does not need complete proofs - don't spend time writing them!

(a) Every finite set is closed.

True. A finite set has no limit points, and thus contains all its (nonexistent) limit points.

(b) If \(K \) is a non-empty compact set, then \(\text{sup} \ K \) exists, and is contained in \(K \).

True. If \(K \) is compact, it is closed and bounded. Since \(K \) is bounded, \(\text{sup} \ K \) exists. If \(\text{sup} \ K \) is a limit point, it must be in \(K \) because \(K \) is closed. Otherwise, it's an isolated point of \(K \), and is thus also in \(K \).

(c) Every non-empty open set is uncountable.

True. A non-empty open set contains an interval \(V_\varepsilon(x) = (x - \varepsilon, x + \varepsilon) \). This interval has the same cardinality as \(\mathbb{R} \), so the open set is uncountable.
True/False/Explain, continued.

(d) If \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} f(x)g(x) \) both exist, then \(\lim_{x \to c} g(x) \) exists also.

False. Let \(c = 0 \), \(f(x) = x \), \(g(x) = \frac{1}{x} \).

Then \(\lim_{x \to 0} f(x) g(x) = \lim_{x \to 0} (1) \) exists, and

\(\lim_{x \to 0} f(x) = \lim_{x \to 0} x \) also exists, but

\(\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{1}{x} \) does not exist.

(e) There is a non-empty compact set \(K \) and a continuous function \(h : K \to \mathbb{R} \), such that \(h(K) \) is an open set.

False. If \(K \) is compact and \(h \) is continuous, \(h(K) \) is also compact. Thus \(h(K) \) is closed, a non-empty, and bounded (hence \(h(K) \neq \mathbb{R} \)). The only sets that are both open and closed are \(\emptyset \) and \(\mathbb{R} \).

(f) There is an increasing function \(f : \mathbb{R} \to \mathbb{R} \) whose set of discontinuity \(D_f \) is the Cantor set.

False. \(D_f \) for an increasing function is finite or countable. On the other hand, \(C \) is uncountable.
3. [25 points] Let \(A \) and \(B \) be closed sets. Prove that \(A \cup B \) is closed.

We need to prove that \(A \cup B \) contains its limit points. So let \(x \) be a limit point of \(A \cup B \). Then there is a sequence \((x_n) \rightarrow x \), where \(x_n \in A \cup B \) for all \(n \). \((x_n)\) must have a subsequence \((x_{n_k})\) that is contained in just \(A \) or just \(B \). Then

\[
\lim (x_{n_k}) = \lim (x_n) = x,
\]
so \(x \) is a limit point of \(A \) or \(B \).
Since \(A \) and \(B \) are closed, \(x \in A \) or \(x \in B \).
Therefore, \(x \in A \cup B \), and \(A \cup B \) is closed.

Alternate approach: use the definition of "limit point" instead of sequences.

Alternate approach: take complements of \(A \) and \(B \), which are open sets. Then prove that the intersection of two open sets is open.
4. [25 points]
(a) Prove that the function \(f(x) = 2|x| \) is uniformly continuous on \([-1, 1]\).

Choose an arbitrary \(\varepsilon > 0 \), and let \(\delta = \varepsilon / 2 \). Now, suppose that \(x, y \in [-1, 1] \) and \(|x - y| < \delta \). Then:

\[
|f(x) - f(y)| = |2|x| - 2|y|| \\
\leq 2|x - y| \\
< 2 \delta \\
= \varepsilon.
\]

Thus, \(f(x) \) is uniformly continuous (and in particular, continuous).

(b) Use part (a) to prove that \(g(x) = \frac{2|x|}{4|x| + 1} \) is uniformly continuous on \([-1, 1]\).

Since \(f(x) \) is continuous on \([-1, 1]\),

\[4|f(x)| = 4f(x) = \frac{2|x|}{4|x| + 1}\]

is continuous.

\(\Rightarrow \)

\(g(x) \) is continuous (and \(g(x) \neq 0 \) on \([-1, 1]\))

\(\Rightarrow \) \(g(x) = \frac{2|f(x)|}{2f(x) + 1} \) is continuous on \([-1, 1]\).

Since \([-1, 1]\) is a compact set and \(g(x) \) is continuous on \([-1, 1]\), it must be uniformly continuous.

(Note: combinations of uniformly continuous functions are not automatically uniformly continuous.)