Preliminary Review Problems - Calculus 1
These problems are intended to be done without the use of a calculator

Question 1: Let \(f(x) = x^2 + 5x \)

(a) Solve the equation \(f(x) = -6 \)
(b) Solve the inequality \(f(x) > -6 \)

(c) Solve the equation \(f(x) = 1 \)
(d) Solve the inequality \(f(x) < 1 \)

Question 2:
Among the parabolas shown in a dashed line on the graph at right, identify the one whose equation is: \(y = (x - a)^2 + b \) with \(a < 0 \) and \(b > 0 \),

Question 3: Find the domain \(D_f \) of the function \(f(x) \). Give your answer in interval notation (i.e., as an interval or a union of intervals).

(a) \(f(x) = \sqrt[3]{x - 1} \)

(b) \(f(x) = \sqrt{3 - x^2} \)

(c) \(f(x) = \frac{x}{x + 4} \)

(d) \(f(x) = \sqrt{3 - x} + \frac{x}{\sqrt{x + 4}} \)

Question 4: Find the domain \(D_f \) and the range \(R_f \) of \(f(x) \). Give your answers in interval notation.

(a) \(f(x) = 10e^x \) \(D_f = \) \(R_f = \)

(b) \(f(x) = \ln(x - 4) \) \(D_f = \) \(R_f = \)

(c) \(f(x) = -5 \cos(2x) \) \(D_f = \) \(R_f = \)
Question 5: Find the functions $f \circ g$ and $g \circ f$ and give their domains, $D_{f \circ g}$ and $D_{g \circ f}$.

Given:

$$f(x) = \sin x \quad \text{and} \quad g(x) = \frac{1}{x + 2}$$

$$f \circ g = \quad D_{f \circ g} =$$

$$g \circ f = \quad D_{g \circ f} =$$

Question 6: Given the right triangle in the figure below, express $\cos \theta$, $\csc \theta$, and $\tan \theta$ in terms of x.

![Right Triangle](image)

Question 7: Find the lengths of the sides x and y in the right triangle pictured below.

![Right Triangle](image)

Question 8: Simplify the expressions using appropriate trigonometric identities.

(a) $\tan^2 \theta - \frac{1}{\cos^2 \theta}$
(b) $\frac{8 - 8 \cos^2 \theta}{\sin \theta}$

Question 9: Find all values of θ in the interval $0 < \theta < \pi$ such that $4 \cos^2 \theta - 1 = 0$.

Question 10: Find the exact value of each expression.

(a) $\tan(2\pi)$
(b) $\sin \left(\frac{3\pi}{4}\right)$
(c) $\csc \left(\frac{\pi}{3}\right)$

(d) $\arctan(-1)$
(e) $\cos^{-1}(-1)$
(f) $\sec^{-1}(2)$
Question 11: Simplify using Laws of Exponents. (in (a) the answer is a number, in (b) - a power of x).

(a) $\left(\frac{1}{25}\right)^{-3/2}$

(b) $\frac{x}{\sqrt[3]{x^3}}$

Question 12: Find the exact value of the expression.

(a) $\ln 4 - \ln(4e^5)$

(b) $e^{-\ln 2}$

Question 13: Express the given quantity as a single logarithm. Simplify the expression inside this logarithm when possible.

(a) $3 \ln 3 + 2 \ln 2$

(b) $\ln(3x^2) - 4 \ln(\sqrt{x})$

(c) $2 \ln(\cos x) + \ln(\sec x)$

Question 14: Solve each equation for x.

(a) $e^{5x-2} = 3$

(b) $\ln(x + 2) = \ln 7 + \ln x$

Question 15: For the function $h(x)$ find a pair of functions $f(x)$ and $g(x)$ (where $f(x) \neq x$ and $g(x) \neq x$) such that $h(x) = (f \circ g)(x)$.

(a) $h(x) = \sqrt{e^x + 1}$

(c) $g(x) = $

(b) $h(x) = \tan(x^3)$

(d) $g(x) = $