Real Analysis Ph D Qualifying Exam
Temple University
January 2020

Part I (Do three problems)

I.1. Give an example of an \(f \) which is not Lebesgue integrable on \(\mathbb{R} \), but whose improper Riemann integral exists and is finite. Prove your answer.

I.2. Show that if \(g : \mathbb{R} \to \mathbb{R} \) is continuous and compactly supported, and \(f, \{ f_n \} \in L^1(\mathbb{R}) \) are such that \(\int_{\mathbb{R}} |f_n - f| \, dx \to 0 \) as \(n \to \infty \), then \(gf \in L^1(\mathbb{R}) \) and \(\int_{\mathbb{R}} |gf_n - gf| \, dx \to 0 \) as \(n \to \infty \).

I.3. Let \(f : [a, b] \to \mathbb{R} \) be continuous. Prove that
\[
\lim_{n \to \infty} \left(\int_{a}^{b} |f(x)|^n \, dx \right)^{1/n} = \sup_{x \in [a, b]} |f(x)|.
\]

I.4. Consider a sequence of real-valued functions \(\{f_n(x)\} \). Recall that \(f_n \) converges in measure to \(f \) if for every \(\delta > 0 \),
\[
\lim_{n \to \infty} \left| \{ \{x \in \mathbb{R} : |f_n(x) - f(x)| > \delta \} \right| = 0.
\]

(a) Prove that if \(f_n \) converges to \(f \) in \(L^1 \) then \(f_n \) converges to \(f \) in measure.
(b) Does convergence in measure imply convergence in \(L^1 \)? Justify your answer.
(c) Do there exist sequences \(f_n \) defined on \([0, 1]\) that converge in measure, to the function 0, but do not converge a.e.?

Part II (Do two problems)

II.1. Let \(A \subset [0, 1] \) be a Borel set such that \(0 < m(A \cap I) < m(I) \) for every interval \(I \) in \([0, 1]\). Here \(m \) denotes the Lebesgue measure. Let \(F(x) = m([0, x] \cap A) \). Prove that \(F \) is absolutely continuous and strictly increasing on \([0, 1]\) and that \(F' = 0 \) on a set of positive measure.

II.2. Let \(f(x, y), 0 \leq x, y \leq 1 \), satisfy the following conditions: for each \(x \), \(f(x, y) \) is an integrable function of \(y \), and \((\partial f(x, y)/\partial x) \) is a bounded function of \((x, y) \). Show that \((\partial f(x, y)/\partial x)\) is a measurable function of \(y \) for each \(x \) and \(\frac{d}{dx} \int_{0}^{1} f(x, y) \, dy = \int_{0}^{1} \frac{\partial}{\partial x} f(x, y) \, dy \).

II.3. Let \(\Gamma(y) = \int_{0}^{\infty} e^{-x} x^{y-1} \, dx \), \(y > 0 \).

(a) Show that \(\Gamma \) is continuous on \((0, \infty)\), without using Part (b).
(b) Show that \(\Gamma'(y) = \int_{0}^{\infty} e^{-x} x^{y-1} \ln x \, dx \), \(y > 0 \).