Part I. (Do 3 problems)

1. Suppose \(f_n \to f \) uniformly in \(E \) where \(f_n \) are continuous. Prove that if \(x_0 \in E \) and \(x_n \to x_0 \) with \(x_n \in E \), then \(f_n(x_n) \to f(x_0) \).

2. Let \(f_n(x) = n \sin \left(\frac{x}{n} \right) \). Prove that:
 (a) \(f_n \) converges uniformly on any finite interval. Hint: \(\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots \) for all \(x \).
 (b) \(f_n \) does not converge uniformly on \(\mathbb{R} \).
 (c) \(f_n \) does not converge in measure on \(\mathbb{R} \). Hint: the interval \((n\pi,(n+1)\pi)\) is contained in the set \(|f_n(x) - x| > \epsilon\).

3. Prove that the upper lim is sub additive and lower lim is super additive:
 \[
 \limsup_{k \to \infty} (a_k + b_k) \leq \limsup_{k \to \infty} a_k + \limsup_{k \to \infty} b_k
 \]
 \[
 \liminf_{k \to \infty} (a_k + b_k) \geq \liminf_{k \to \infty} a_k + \liminf_{k \to \infty} b_k.
 \]
 To avoid operations with \(\pm \infty \) assume the sequences are bounded.

4. Prove that on \(C[0,1] \) the norms \(\|f\|_\infty = \max_{x \in [0,1]} |f(x)| \) and \(\|f\|_1 = \int_0^1 |f(x)| \, dx \) are not equivalent.

Part II. (Do 2 problems)

1. Let \(f \in L^p(E, \mu) \), \(1 \leq p < \infty \), and \(E = \bigcup_{j=1}^\infty E_j \) with \(E_j \subset E_{j+1} \). Prove that \(f \chi_{E_j} \to f \) in \(L^p(E, \mu) \).

2. Let \(\mu \) be a Borel measure in \(\mathbb{R} \) with \(\mu(\mathbb{R}) < \infty \). Define \(f(x) = \mu((a,x]) \) for \(x \in \mathbb{R} \). Prove that
 (a) \(f \) is monotone increasing
 (b) \(\mu([a,b]) = f(b) - f(a) \); for \(a < b \)
 (c) \(f \) is continuous from the right
 (d) \(\lim_{x \to -\infty} f(x) = 0 \).

3. Let \(f : [a,b] \to \mathbb{R} \) integrable. Prove that the functions \(f_n(x) = \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} f(t) \, dt \) are well defined for \(a \leq x \leq b \), \(n = 1, 2, \cdots \) and satisfy \(\int_a^x f_n(t) \, dt = f_{n+1}(x) \).