Part I. (Do 3 problems)

1. Let a_n and ε_n be sequences of real numbers satisfying $|a_{n+1} - a_n| \leq \varepsilon_n$ for all n with $\sum_{k=1}^{\infty} \varepsilon_k < \infty$. Prove that a_n converges to some a and $|a - a_n| \leq \sum_{k=n}^{\infty} \varepsilon_k$.

2. Given two sets $A, B \subset \mathbb{R}^n$ define $A + B = \{x + y, x \in A, y \in B\}$. Prove that
 (a) if A is open or B is open, then $A + B$ is open,
 (b) if A is compact and B is closed, then $A + B$ is closed.
 (c) in \mathbb{R}^2 take $A = \{(x, 0) : x \in \mathbb{R}\}$ and $B = \{(y, 1/y) : y > 0\}$, show A and B are both closed and $A + B$ is not.

3. Let $f_n(x) = n x e^{-n x^2}$ on $[0, +\infty)$. Prove that
 (a) f_n converges to zero pointwise in $[0, +\infty)$
 (b) f_n does not converge uniformly in $[0, +\infty)$
 (c) f_n converges in measure on $[0, +\infty)$
 (d) $\int_0^{\infty} f_n(x) \, dx = \frac{1}{2}$.

 HINT for (c): may use that $e^z \geq z^2/2$ for all $z \geq 0$.

4. Suppose $f_n \to f$ a.e. on \mathbb{R}^n, f_n measurable. Prove that for each $\epsilon > 0$ there exist a sequence of disjoint measurable sets E_j of finite measure such that $|\mathbb{R}^n \setminus \bigcup_{j=1}^{\infty} E_j| < \epsilon$ and $f_n \to f$ uniformly on each E_j.

Part II. (Do 2 problems)

1. Let $b > 0$, $f \in L^1(0, b)$ and let $g(x) = \int_x^b \frac{f(t)}{t} \, dt$ for $0 < x < b$. Prove that $g \in L^1(0, b)$ and
 $$\int_0^b g(x) \, dx = \int_0^b f(t) \, dt.$$

2. Let $1 \leq p < \infty$, $f_k, f \in L^p(E)$, and let $a_k = \int_E |f_k(x) - f(x)|^p \, dx$. Suppose that $\sum_{k=1}^{\infty} a_k < \infty$. Prove that $f_k \to f$ a.e. in E as $k \to \infty$.

3. Let f be a continuous function in $[-1, 2]$. For $0 \leq x \leq 1$ and $k \geq 1$ let
 $$f_k(x) = \frac{k}{2} \int_{x - \frac{1}{k}}^{x + \frac{1}{k}} f(t) \, dt.$$

 Prove that f_k is continuous in $[0, 1]$ and $f_k \to f$ uniformly in $[0, 1]$.