PH.D. COMPREHENSIVE EXAMINATION
REAL ANALYSIS SECTION

January 2002

Part I. Do three (3) of these problems.

I.1. Show that
\[\lim_{n \to \infty} \sum_{k=0}^{2n} \frac{k}{k^2 + n^2} = \frac{1}{2} \ln 5. \]

I.2. Let \(\{x_k\}_{k=1}^\infty \) be a sequence of real numbers satisfying
(a) \(\lim_{n \to \infty} \frac{x_1 + \cdots + x_n}{n} = L \), and
(b) \(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} k(x_k - x_{k-1}) = 0 \); (we set \(x_0 = 0 \)).
Prove that \(\lim_{n \to \infty} x_n = L \).

I.3. Suppose \(f \) is Riemann integrable on \([a, b]\) and \(f(x) = 0 \) for all \(x \in [a, b] \cap \mathbb{Q} \). Prove that \(\int_a^b f(x) \, dx = 0 \).

I.4. Let \(f \in C^1[0, 1] \), \(\delta = \min_{[0,1]} |f'(x)| \), and \(\Delta = \max_{[0,1]} |f'(x)| \). Prove that
\[\frac{1}{12} \delta^2 \leq \int_0^1 f^2(x) \, dx - \left(\int_0^1 f(x) \, dx \right)^2 \leq \frac{1}{12} \Delta^2. \]
Hint: expand \(\int_0^1 \int_0^1 (f(x) - f(y))^2 \, dx \, dy \), Fubini and mean value theorem.
II.1. Let \(f_n(x) = n^{1/2} e^{-nx} \) on \([0, 1]\). Prove that
(a) \(f_n(x) \to 0 \) pointwise on \((0, 1]\),
(b) \(\int_0^1 f_n(x)^2 \, dx \leq C \) for all \(n \),
(c) \(f_n \) does not converge in \(L^2(0, 1) \),
(d) \(\int_0^1 f_n(x) g(x) \, dx \to 0 \) for each \(g \in L^2(0, 1) \).

Hint: for (d) prove it first for simple functions and then use the density of the simple functions in \(L^2(0, 1) \).

II.2. Let \(g : \mathbb{R} \to \mathbb{R} \) be continuous and invertible. Suppose that for each Lebesgue measurable set \(A \), the set \(g(A) \) is Lebesgue measurable and define the measure \(\mu(A) = |g(A)| \). Prove that the measure \(\mu \) is absolutely continuous with respect to Lebesgue measure if and only if \(g \) is an absolutely continuous function, and in that case \(\frac{d\mu}{dx} = g'(x) \) a.e.

II.3. Let \(f_k \) be a sequence of functions in \(L^2(\mathbb{R}^n) \). Suppose that \(\|f_k\|_{L^2(\mathbb{R}^n)} \leq M \) for all \(k \), and \(f_k \to f \) a.e. Prove that
\[
\int_{\mathbb{R}^n} f_k(x) g(x) \, dx \to \int_{\mathbb{R}^n} f(x) g(x) \, dx,
\]
for all \(g \in L^2(\mathbb{R}^n) \).