Ph.D. Comprehensive Examination (Sample I)
Partial Differential Equations

Part I. Do three of these problems.

I.1. Write a formula for a solution of the following initial-value problem
\[
\begin{cases}
ut + u_x = u^2 & \text{in } \{(x, t) : t > 0\} \\
u(x, 0) = g(x), & x \in \mathbb{R}
\end{cases}
\]

I.2. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^n \) and \(u \in C^2(\Omega) \cap C(\overline{\Omega}) \) satisfy \(\Delta u = u^3 \) in \(\Omega \) and \(u = 0 \) on \(\partial \Omega \). Prove that \(u \equiv 0 \) in \(\Omega \).

I.3. Let \(n > 1 \). Show that the function \(u(x) = \log \log \left(1 + \frac{1}{|x|} \right) \) belongs to \(W^{1,n}(B_1(0)) \) where \(B_1(0) \) denotes the unit ball in \(\mathbb{R}^n \) centered at the origin.

I.4. Write a formula for a solution of
\[
\begin{cases}
ut - \Delta u + cu = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\
u(x, 0) = g(x), & x \in \mathbb{R}^n.
\end{cases}
\]
Here \(c \in \mathbb{R} \) and \(a \in \mathbb{R}^n \) and \(g(x) \) is a bounded continuous function.

Part II. Do two of these problems.

II.1. Let \(u \) be a harmonic function on \(\mathbb{R}^n \). Prove that either \(u \) maps \(\mathbb{R}^n \) onto \(\mathbb{R} \) or it is constant.

II.2. Let \(u \in C^2(\mathbb{R} \times [0, \infty)) \) solve the wave equation:
\[
\begin{cases}
utt - u_{xx} = 0 & \text{in } \mathbb{R} \times (0, \infty) \\
u(x, 0) = g(x), u_t(x, 0) = h(x), & x \in \mathbb{R}.
\end{cases}
\]
Suppose \(g \) and \(h \) have compact support. The kinetic energy at time \(t \) is given by \(k(t) = \frac{1}{2} \int_{-\infty}^{\infty} u^2_t(x, t) \, dx \) and the potential energy at time \(t \) is \(p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u^2(x, t) \, dx \).
Prove
\[
\begin{align*}
(1) & \quad k(t) + p(t) \text{ is constant in } t. \\
(2) & \quad \text{There exists } t_0 \text{ such that if } t \geq t_0, k(t) = p(t).
\end{align*}
\]

II.3. Let \(a \neq 0 \). For \(\xi \in \mathbb{R} \) compute the integral
\[
\int_{-\infty}^{\infty} e^{ix\xi} \frac{1}{x^2 + a^2} \, dx.
\]
Here \(i = \sqrt{-1} \).