Part I. (Do 3 problems)

1. Solve the initial value problem
 \[u_x + x^2 y u_y = -u, \quad u(0, y) = y^2. \]

2. The Fourier transform is defined by \(\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \xi x} \, dx \). Calculate the Fourier transform of the function
 \[f(x) = \begin{cases}
 e^{2\pi ibx} & \text{for } |x| \leq a \\
 \frac{1}{\sqrt{a}} & \text{for } |x| > a,
 \end{cases} \]
 and the norm \(\| \hat{f} \|_2 \). The numbers \(a \) and \(b \) are positive.

3. Let \(\Omega \) be a bounded open set in \(\mathbb{R}^n \). Prove the following interpolation inequality:
 \[
 \left(\int_{\Omega} |Du(x)|^2 \, dx \right)^2 \leq \left(\int_{\Omega} u(x)^2 \, dx \right) \left(\int_{\Omega} (\Delta u(x))^2 \, dx \right)
 \]
 for all \(u \in C_0^\infty(\Omega) \); \(Du \) denotes the gradient of \(u \).
 HINT: first prove the following formula valid for all \(v \in C^\infty \): \(\text{div}(v Dv) = v \Delta v + |Dv|^2 \).

4. Let \(u \) be a bounded solution to the heat equation \(u_t - u_{xx} = 0 \) in \(-\infty < x < \infty, t > 0 \) with \(u(x, 0) = f(x) \) with \(f \in L^2(\mathbb{R}) \). Prove that there is a constant \(C > 0 \), independent of \(u \), such that
 \[\sup_x |u_x(x, t)| \leq C t^{-3/4} \| f \|_2, \quad \text{for all } t > 0. \]

Part II. (Do 2 problems)

1. Let \(\Omega \subset \mathbb{R}^n \) be a bounded regular domain. Prove that if \(u \in W^{1,p}(\Omega) \) and \(v \in W^{1,q}(\Omega) \) with \(1 \leq p, q \leq \infty \) and \(\frac{1}{p} + \frac{1}{q} = 1 \), then \(uv \in W^{1,1}(\Omega) \).

2. Let \(\Omega \subset \mathbb{R}^n \) be an open bounded domain and let \(u_k \) be a sequence of harmonic functions in \(\Omega \). Suppose that \(u_k \leq u_{k+1} \) for \(k = 1, 2, \cdots \) and there exists \(x_0 \in \Omega \) such that \(u_k(x_0) \) converges. Prove that there exists a harmonic function \(u \) in \(\Omega \) such that \(u_k \to u \) uniformly on compact subsets of \(\Omega \).

3. Let \(\Omega \) be a bounded smooth domain and let \(u \) be smooth in \(\bar{\Omega} \times [0, T] \) solving
 \[u_{tt} - \Delta u + u^3 = 0 \quad \text{in } \Omega \times [0, T] \]
 \[u(x, t) = 0 \quad \text{in } \partial\Omega \times [0, T]. \]
 Prove that the energy
 \[E(t) = \int_{\Omega} \left(u_t^2 + |Du|^2 + \frac{1}{2} u^4 \right) \, dx \]
 is constant in \([0, T] \).