Part I. Solve three of the following problems.

I.1 Prove that
\[O(n) = \{ A \in M_n(\mathbb{R}) : \; A^t A = \text{Id} \} \]
is a smooth submanifold of the space \(M_n(\mathbb{R}) = \mathbb{R}^{n^2} \) of \(n \times n \) matrices. Here, \(A^t \) is the transpose of the matrix \(A \). Describe a natural identification of the tangent space to \(M_n(\mathbb{R}) \) at the identity with \(M_n(\mathbb{R}) \), and describe the tangent space to \(O(n) \) at the identity as a subspace of \(M_n(\mathbb{R}) \).

I.2 Give a careful definition of a normal covering map. Also, give

- an example of a normal covering map \(p \) that is not a homeomorphism, and
- an example of a non-normal covering map \(p \).

For both examples, prove that the corresponding covering map is normal (resp. non-normal).

Hint: there is a non-normal covering map with the base being the Klein bottle.

I.3 Consider the circle \(S^1 \) as the unit circle in \(\mathbb{R}^2 \) with coordinate \(\theta \), then give the torus \(T = S^1 \times S^1 \) into \(\mathbb{R}^4 \) coordinates \((\theta_1, \theta_2)\). Define differential forms
\[\eta_i = d\theta_i \quad i = 1, 2. \]

(a) Given \((a, b), (c, d) \in \mathbb{R}^2\), calculate
\[(a\eta_1 + b\eta_2) \wedge (c\eta_1 + d\eta_2). \]

(b) Calculate
\[\int_T \eta_1 \wedge \eta_2. \]

(c) Prove that \(a\eta_1 + b\eta_2 \) is closed, but not exact, for every \((a, b) \in \mathbb{R}^2\) except \((0, 0)\).

I.4 Let \(M \) be a closed 4-manifold and let \(\mathbb{CP}^2 \) be the complex projective plane. Compute the homology groups \(H_*(X; \mathbb{Z}) \) of the blowup \(X = M \# \mathbb{CP}^2 \) of \(M \) at a point (i.e., the connect sum of \(M \) and \(\mathbb{CP}^2 \)) in terms of the homology groups of \(M \).
Part II. Solve two of the following problems.

II.1 Let $T = \mathbb{R}^2/\mathbb{Z}^2$ be a 2-torus.

(a) Let L be a line of slope (p, q) in \mathbb{R}^2, with p and q integers (not both zero). Prove that L projects to a homotopically nontrivial closed loop $\sigma_{p,q}$ on T.

(b) Let T_1 and T_2 be two copies of T, and let X be the space given by gluing T_1 to T_2 by gluing a (p_1, q_1) curve on T_1 to a (p_2, q_2) curve on T_2. Compute $\pi_1(X)$. You do not need to prove that $\pi_1(T) \cong \mathbb{Z} \times \mathbb{Z}$.

II.2 State the classification of closed, connected 2-dimensional manifolds. For each integer $k \geq 1$, identify all such manifolds M with $H_k(M; \mathbb{Z}) = \{0\}$. Also identify all such M with $H_k(M; \mathbb{Q}) = \{0\}$.

II.3 Let X be a closed manifold and Y an embedded closed submanifold with Euler characteristic zero. Show that X and $X \setminus Y$ have the same Euler characteristic.