Part I: Do three of the following problems.

1. Suppose \(f : M \to N \) is a smooth map between smooth manifolds and \(S \subset N \) is a smooth submanifold. Suppose that for every \(p \in f^{-1}(S) \), the vector spaces \(f_*(T_p M) \) and \(T_{f(p)} S \) span \(T_{f(p)} N \). Prove that \(f^{-1}(S) \) is a smooth submanifold of \(M \), and compute its dimension.

2. Let \(X = T^2 \vee S^1 \). Compute \(\pi_1(X) \), draw a picture of the universal cover \(\tilde{X} \), and explain how \(\pi_1(X) \) acts on \(\tilde{X} \).

3. Let \(X \) be a connected \(CW \) complex such that \(H_1(X) \cong \mathbb{Z}/3 \).
 (a) Does \(X \) have a connected 2–fold cover? Prove your answer.
 (b) Does \(X \) have a connected 3–fold cover? Prove your answer.

4. Let \(M \) be a non-orientable manifold and \(B^k \) a ball. Prove that \(M \times B^k \) is non-orientable.

Part II: Do two of the following problems.

1. Let \(M \) be a closed, orientable, smooth manifold. Let \(S \subset M \) be an orientable submanifold of codimension at least 1. Construct a smooth flow \(\varphi_t : M \to M \) that takes \(S \) off itself. That is, construct \(\varphi_t \) and show there is an \(\epsilon > 0 \) such that \(\varphi_t(S) \cap S = \emptyset \) for \(t \in (0, \epsilon) \).

2. This problem is about the reduced homology groups of \(\mathbb{RP}^n \).
 (a) Prove that
 \[
 \tilde{H}_n(\mathbb{RP}^n) = \begin{cases}
 0, & n \text{ is even} \\
 \mathbb{Z}, & n \text{ is odd}
 \end{cases}
 \]
 (b) Use the long exact sequence of the pair \((\mathbb{RP}^n, \mathbb{RP}^{n-1})\) to show that
 \[
 \tilde{H}_{n-1}(\mathbb{RP}^n) = \begin{cases}
 \mathbb{Z}/2, & n \text{ is even} \\
 0, & n \text{ is odd}
 \end{cases}
 \]
 (c) Use induction to compute \(\tilde{H}_k(\mathbb{RP}^n) \) for all \(k \). You may assume the answer to parts (a), (b) in addition to standard facts about homology groups of standard spaces.
3. Consider the torus $T = S^1 \times S^1 \subset \mathbb{R}^2 \times \mathbb{R}^2$ given by

$$T = \{(w, x, y, z) \in \mathbb{R}^2 \times \mathbb{R}^2 : w^2 + x^2 = 1 = y^2 + z^2\},$$

Consider the 2-form $\omega = xyz \, dw \wedge dy$, restricted to T.
(a) Is ω closed? Justify your answer.
(b) Is ω exact? Justify your answer. Hint: integrating ω over T is helpful.